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Preface

We may consider technology as the set of tools, both hardware and software,
that help us improve our performance in different working (and playing) lo-
cations; it includes all the man-made objects from paper to the latest audio
book. Information technology helps to use, edit, share, and exchange knowl-
edge, in the form of documents— textual, acoustic, and pictorial—quickly and
efficiently. E.D. Hirsch, Jr. pointed out that literate people in every society
and every culture share a body of knowledge that enables them to communi-
cate with each other and make sense of the world around them. The kinds of
things a literate person knows vary from society to society and from era to
era, so there is no absolute definition of literacy; the same holds for computer
literacy. We may look at technology literacy from three different dimensions:
capabilities, knowledge, and ways of thinking and acting. According to this
scheme, such dimensions can be placed along a continuum - from low to high,
limited to extensive, and poorly developed to well developed. In such a three-
dimensional (3D) space, are the different products and gadgets in our everyday
life, like the iPod, that are extensively developed, and have high-level capa-
bilities but require little knowledge to make them work. Conversely, a CAD
software package has low capabilities since it is a specialized application, and
extensive knowledge is required to use it. These ways of thinking and act-
ing must be well developed. There are different views on which computing
platform will encompass others existing one. At first the office computer sub-
stituted for the mainframe computer. Next came the laptop, which worked
even better than the desktop, but its short battery life still remains a short-
coming. Personal digital assistants (PDAs) and pocket computers are rivaling
laptops in providing services that were only possible on larger machines. Next
came the cellular phone with its color screen, its variety of capabilities and
its connection to the Internet. Even on this small and light device, the video
games (first played only on TV screens) are gradually expanding with respect
to the home entertainment area, but, at the same time, they are also becoming
communication platforms employing their processing power not only to cre-
ate characters and their corresponding animation but also to work with email
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and to exchange messages. The question remains: How will people change
their behaviors in order to use new services on the cellular phone, modifying
their day-to-day habits so that the new portable phone may next become a
real media center? We all are resistant to changing our habits; it is an inborn
inertia that stops us from learning new systems. Such an initial learning phase
requires extra time, but it leads us to the efficient use, in this case, of a multi-
functional cellular phone. This quickly evolving scenario makes it difficult to
forecast when and how we will be using new kinds of cellular phones in the
near future. Nevertheless, their graphics possibilities, memory capability, and
higher computing power will surely enable them to display complex, animated
pictures, which may represent different kinds of useful information, as will be
extensively demonstrated by this book. For instance, by looking at the phone
screen, we could take a quick glance at the stock market and graphically see
the trends at other international markets. We could see weather forecasts,
which could be displayed by animated icons portraying rain or sunshine with
a false-color temperature scale, or even watch short videos or film trailers.
We may therefore assume that the cellular phone will become something very
close to a pocket computer that also has audio communication facilities so that
we can keep calling it a phone! Nevertheless some usability problems will crop
up: How small can the number buttons be? How large must the display be in
order to enable any user to see it clearly? How much battery independence
should we have, so as to let the user forget about power consumption and
recharging? Indeed, small is beautiful, as many people have said in the past,
but too small can be disappointing. This book begins with the description
of a set of applications in mobile graphics (graphics as performed on a cel-
lular phone), including possible scenarios and relative challenges. The details
of 3D graphics using the OpenGL r©ES libraries are next provided together
with their possible extensions in the future, followed by the JavaTMMobile
3D graphics and Direct3D r©Mobile libraries to perform similar functions. Fi-
nally, some samples and cases are shown to better illustrate the capabilities of
the above software libraries. After reading this book, you will be up-to-date
in the realm of 3D graphics executed on the cellular phone of the future. We
are betting such a miniplatform will enable the user to reach, a large amount
of services and information that were previously available only through other,
larger, platforms.

Stefano Levialdi
Life Fellow, Institute of Electrical and Electronics Engineers
Rome, Italy
March 2006
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Scenarios and Applications



1

Mobile Graphics Applications

1.1 The Rise of Mobile Graphics

In the last few years we have seen a dramatic growth in both the computa-
tion and connection capabilities of mobile computing devices. Today, all this
power can be packed into a device so compact that it fits in your pocket. In
fact you can go out your front door carrying your favorites images, videos,
and data files, working wherever you like [1]. Throughout this book we will
talk about mobile devices including palm-tops and mobile phones, which are
very compact with limited amount of RAM (random access memory). We will
also talk about handhelds, with still compact but wider screens than mobile
devices and more RAM and CPU power. Not only has the computation and
communication power of mobile devices and handhelds been increased, but the
visualization and graphics capabilities have also risen. You can now take a pic-
ture or capture a video sequence with your cellular phone or personal digital
assistant. Moreover, you can view as many colors as on a graphic workstation
and interact with color graphics applications in real time. Even considering
these major advancements in mobile devices, there are still unresolved prob-
lems. Manufacturers can integrate all the multimedia content they want, but
if the battery runs out and users can’t, for example, make a brief phone call,
the tool will not be effective. The challenge is to integrate all this video and
multimedia technology without sacrificing the battery life of the product or
weighing it down with expensive batteries. There have been advancements in
microprocessor management of battery power consumption and the graphics
capabilities associated with it, but with these enhancements the desktop com-
puter continues to be the leader in providing multimedia experiences to end
users. However, this may change very soon.
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1.2 Mobile Devices

The first question to ask is: Which mobile applications will best suit the new
generation of graphics capabilities and user needs? Entertainment, games,
computer-aided design (CAD), virtual reality (VR), data visualization, and
education and training are all examples of application areas that drove the
development of graphics on desktop computers. Some of them, such as CAD
or VR, even if they could be supported by the new handheld computers and
mobile devices, might not be suited in terms of ergonomics [2]. It’s hard to
imagine a designer developing a new car on a mobile device even with new mo-
bile hardware capabilities. Even considering the new graphics features, mobile
devices are still less capable than desktop computers. In fact, programs run
at lower speed, there is less memory for processing and storing programs, the
displays are smaller in size and color numbers, and the battery could run out.
The most important reason behind these differences is power: one device is
plugged in to the power grid, while the other is dependent on battery power.
Power management is of extreme importance to manufacturers, and for every-
one in this market including content providers, handset vendors, and carriers.
However, mobile devices will improve. The continuing exponential reduction
in size and cost (Moore’s law) will allow more processing power, memory, and
storage for mobile devices. Also, batteries will last longer with advancements
in integrated circuit power consumption. Moreover, mobile devices are already
superior to the desktop computers of 10 years ago. In particular, the computer
graphics and visualization capabilities on these devices are improving quickly.

Another relevant issue to deal with is the usability of mobile devices. In
fact, manufacturers have reduced the scale of devices, and are addressing the
difficulties in using handhelds. Many of them have problems with inputting
data (keyboards are too small or pen-based systems require the user to learn
a specific language), or provide miniaturized displays and very small visual
interfaces. The following problems can be distinguished:

• storage and data size limitations,
• communications and graphics interfaces usability problems.

It is important to think about data size reduction in order to produce an
acceptable real-time visualization. There are basically two approaches to data
reduction:

1. the generic approach consists of data structures and size reallocations
to match the device limitations, without considering user needs and pro-
cesses;

2. the so-called specific approach provides the minimum requirements for
executing the user processes.

For instance, in the generic approach the original text of an article could
be synthesized by small paragraphs representing its sense, while images and
videos could be coded with less resolution in order to reduce size and space.
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Communications problems deal mainly with wireless networks communica-
tion. Wireless communication requires significant power consumption and
could easily discharge batteries of mobile devices. In case of power or en-
ergy loss, the applications should automatically save their state (a snapshot
of critical system resources) from time to time to allow recovery after a power
shut-down. Graphics interfaces provide interesting functionalities and features
on mobile devices; in fact, the user can interact directly with the screen via
pen-based software or touch sensitive screens. Visual and graphics interfaces
for mobile devices basically use three approaches. The first consists of one
handheld the device, and the user’s second hand interacts with the visual in-
terface via a pen device. The second approach is to have special buttons on
the device that help users in performing certain task. The third approach con-
sists of using a touch-sensitive screen and fingers or stylus devices to interact
with the applications. This last method has started to be supported by many
manufacturers because of the decreasing costs of touch screens and the fact
that fingers could be intuitively used.

1.2.1 Platforms

Graphics workstations have existed for the last 20 years, but many of the
design choices made for them are not suitable for mobile devices. In fact, they
require too much power, expense, and space to be cloned on mobile devices.
However, some approaches, like video cards supporting OpenGL application
programming interfaces (API), can be adapted with fewer features, maintain-
ing the core functionalities. User expectations, which were set by desktop
computers, will push manufacturers to fill the gap in graphics capabilities be-
tween mobile and desktop computers. There is no need for completely new
ideas, though creative approaches are always welcome. The main problem is
how to fit graphics workstation features into mobile devices.

Handheld devices (Figure 1.1) vary widely in capability, ranging from 400-
MHz PDAs with 64 MB RAM, to 50-MHz mobile phones with 1 MB RAM.
Graphics applications have to be designed to accommodate these differences
by enabling small implementations with minimum data storage requirements,
minimized instruction/data traffic, and so on. For users, this means smaller
binaries to download that consume less storage on the device. Moreover, there
are different kinds of hardware. Let’s consider the following classifications,
which will help us in identifying mobile device platforms:

• Handheld Computers
These are small, light, and fit into pockets. They can be connected to the
Internet, and users can usually input data or run applications via a pen
and a touch screen. Usually they provide icons and buttons on the device
that help users to quickly run frequently used applications.

• Mobile Phones
Modern mobile phones, thanks to new technology enhancements, have
evolved from using a voice-based interface (phone calls being the main
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application) to having powerful network clients. There are many different
mobile phones on the market today: JavaTM based, including photo and
video cameras, supporting UMTS (universal mobile telecommunications
system) and Bluetooth, thousands of color graphics displays, and so on.

• Smart Phones
Smart phones are a combination of mobile phones and handhelds with
an organizer in a single communication system. Smart phones usually al-
low wireless connections supporting faxes, e-mail, SMS (short message
service), Internet access, applications, and Personal Information Manage-
ment (PIM) software. They can also be easily connected to a PC via USB
cables, wireless interfaces, Bluetooth, or infrared connections.

For graphics applications, the industry is setting up optimization processes
in order to fit all the features into mobile and handhelds devices. Graphic and
multimedia content will stimulate the development of mobile applications only
if they respect the desktop standard people are accustomed to. Hardware
and software development follows user needs but also requires investment in
terms of money and time. To fit the graphics requirements and meet cost re-
quirements, standards should be developed and adopted in developing mobile
graphics applications.

Fig. 1.1. (a) Handhelds devices. (b) Mobile phones. (c) Smart phones.
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1.2.2 Software

Since we will see how to design and develop three-dimensional (3D) appli-
cations for mobile devices, we need to know which software platforms are
supported by handhelds in order to manage different operating system capa-
bilities.

Mobile devicessupport different operating systems, and we will describe
the three most widespread: Microsoft Windows r©, Palm OS r©, and Symbian
OSTM.

Microsoft Windows for pocket devices started in 1996. The applica-
tion level interface is based on API Thus developers would find a subset of
classical Windows API (similar to the desktop version) and developer tools
like Visual Basic r©, Visual C++ r©, etc.

The user interface for pocket PCs is similar to other Windows-based per-
sonal computers. The Start menu is on the bottom of the display, as is the
task bar; however the status bar has moved to the top. Every application is
embedded into a window and can be managed from that window.

Palm OS has been developed by PalmTM, Inc., and is a widely used hand-
held operating system. It includes programming API, and a good hardware
abstraction layer that helps in porting to new platforms (different kinds of
CPUs). It also has features concerning security, color displays, e-mail, and
wireless Internet access.

Palm OS manages memory with so-called memory cards. A memory card
is a logic unit made of RAM, read-only memory (ROM), or both. The en-
tire main memory is split into different heaps: one single dynamic heap, and
multiple storage heaps.

Palm OS is an event-driven OS; everything is based on events raised by
the user or applications, caught by event handlers.

There are three major programming languages used for developing applica-
tions on Palm OS: C, C++, and Java. Because of the limited heap size, C++
is preferred to C++ and Java. Palm provides two packages for application
development:

• The Palm Software Development Kit (SDK) includes API for programming
interfaces, managing the system, and communications.

• The Conduit Development Kit (CDK) supports the conduits development
for synchronizing and backing up data/applications to and from the Palm
device and the desktop PC.

The last of the most used operating systems (OSs) for handhelds is Sym-
bian OS, also known as EPOC r©(EPOC was a range of operating systems
developed by PsionTMfor portable devices, primarily PDAs). It is a real-time,
32-bit multitasking OS that uses C++ and an object-oriented approach. Sym-
bian and EPOC were started by the PSion software company. In June 1998,
PSion, together with EricssonTM, MotorolaTM, and NokiaTMfounded Sym-
bian as a joint venture for developing wireless and mobile platforms. Later
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on, PanasonicTM, Sony EricssonTM, and SiemensTMalso joined the Symbian
venture. It is a stable OS for handheld and mobile devices. It runs on x86 PC
processors and various ARM Ltd (advanced RISC machines) CPUs.

Symbian OS provides a three-layer model for developing applications. The
three layers are the following:

• Application Engine. It includes the logical structure of the application. It
is a model of the application steps.

• Application View. It provides a simple graphic view of the application
data. Thus developers can abstract from specific graphics user interfaces
GUI (different handhelds or mobile phones can render the same GUI item
in different ways).

• Application GUI. It defines the possible graphic views to be displayed to
the end user.

The Symbian OS has been designed and developed using C++, and all
the API are developed with this language. The only way to access all the
OS capabilities is by wrapping C++ code around the provided API. Symbian
now supports also PersonalJava (now extended to J2METMstandard, and it
is described later in this chapter), which is the reference platform for the
JavaPhone r©API.

After this brief introduction to mobile device platforms, features, and char-
acteristics, in the next section we describe the graphics software and packages
running on mobile devices, recalling the usability issues that will help us guide
the development of mobile graphics applications from a user-centric viewpoint.

1.2.3 Usability

Marketing competition for size reduction has enlarged the difficulties in us-
ing mobile devices interfaces both for input (small ”qwerty” keyboard) and
for output (reduced screen size). Many handhelds and mobile devices on the
market have small keyboards or pen-based symbolic languages that are not
error-prone and need to be learned by users. Moreover, they usually include
small screens, such that they affect readability and precision in pen-based
interaction systems.

This section focuses on usability issues for multimedia and graphics ap-
plications dealing with dynamic data. Since the scope of this book is about
mobile 3D graphics, we concentrate on this particular domain, which poses
problems that influence all the various phases of graphics rendering. A study
[3] that focuses on graphics and multimedia applications with mobile devices
treats the usability issues by cataloging them as follows:

• Data reduction
• Data communication
• Graphic interfaces
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It has to be noted that a data reduction process is needed in order to
provide effective real-time visualization for a mobile device.

There are mainly two approaches: The generic approach consists of coding
data for adapting to the mobile device limited resources, independently from
the users’ needs or task requirements.

The specific approach, instead, provides the minimum amount of data and
information needed for completing the user tasks (which implies knowledge of
users’ task and priorities).

In the generic approach, for instance, the text could be summarized in
paragraphs and sentences that contain the keywords and the real sense of
the submitted text. Images and videos could be provided at lower resolutions
(data reduction) and also audio resolution could be reduced.

In the specific approach, video resolution could be adapted depending on
the user tasks, so, for instance, if the task is surveillance, a time interval could
be set and only relevant frames within this time interval are rendered with
high resolution; if the task is watching a sports event, the system provides
lower resolution images but achieves high frame rates for displaying real-time
actions.

Data communication problems are mainly related to the wireless capabil-
ities of handheld devices. Wireless network support involves high power con-
sumption, and thus batteries can run out of energy. In this case (low energy
levels) the applications must be aware of the low power and perform all the
necessary operations for data recovery, for example, saving data and system
status. Some recovery procedures and techniques are listed in [4]. For exam-
ple, one-to-one communications can be directly supported among individual
mobile devices.

Graphics user interfaces (GUI) can support direct manipulation for en-
hancing virtual or augmented reality experience on mobile devices. By using
these visual interfaces, users can manipulate and manage virtual objects in
virtual space (useful not only for games but also for augmented reality appli-
cation, as we will see in Chapter 2). Support for these virtual functions can
be embedded in mobile devices using and supporting tactile and/or optical
sensors. Some new research papers use the concept of physical and virtual
spaces for multimodal communication on mobile devices. They allow users to
manipulate, rotate, and move physical objects that reflect their position in
user interfaces, thus allowing direct manipulation [5, 6]. Graphics interfaces
for mobile devices employ two main approaches. The first approach consists
of designing physical interactive objects separately from the design of mobile
device and then using wireless connections to enable communications. In this
way the dominant hand could handle direct manipulation (while the other
hand holds the mobile device). This approach could involve some awkward
motions because the same hand is in charge of object selection.

One solution for this problem could be found in designing buttons for
these physical manipulation devices in smart locations; thus object selection
is performed directly by using fingers. An alternative approach consists of
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reshaping devices and redesigning basic functionalities in order to embed more
intuitive and advanced kinds of inputs.

The most often used input communication modality for visual interfaces
is the touch screen, by recognizing the level of hand or finger pressure, or
the stylus pointing at the screen. This technique, at its origin, was used as an
alternative communication technique (playing sounds corresponding to touch-
ing actions on the screen) for visually impaired people. The main advantages
of implementing this technique are the low cost of hardware support, and the
minimal space requirements. Moreover, it not only can support finger inter-
action, but also other body parts could be used when needed (for impaired
people or as an additional aid for generic users).
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1.3 Mobile Devices and Graphics

1.3.1 Graphics Software

Graphics software can be split into two main categories: special purpose and
general purpose. Special-purpose graphics software is oriented to end users,
which means it provides a set of functions to draw pictures, graphs, animation,
and so on. The user is usually an expert in his or her domain, but all the
graphics libraries and functions needed to perform the graphics tasks are
hidden from the user. Usually interfaces in these packages are made of menus
and icons representing and summarizing the different graphics functions, such
as lines, circles, color palettes, and so on. These special-purpose applications
are used in many different fields including engineering CAD and computer-
aided manufactoring (CAM) systems, architecture, business, medicine, and
many others. There are many such application packages including Photoshop,
AutoCAD, Maya, and 3DStudio. In other chapters we will see that in specific
cases these special-purpose applications help us in working with our graphics
applications. In fact, sometimes using applications like Maya to set up a 3D
scene and then importing 3D data into a graphics application can result in a
more realistic scene and faster development of the graphics application [7, 8].

General-purpose packages usually come in the form of API and libraries.
They provide a set of graphics functions and integrate them with programming
languages like C++ C++, and Java. The set of functions included in these
packages usually includes geometric functions for lines, polygons, circles, el-
lipses, spheres, cubes, and others. They also provide different settings for color
models and spaces, points of view and camera positioning, shading, transfor-
mation, and modeling functions. We are especially interested in the packages
including OpenGL r©, OpenGL r©ES, VRML (Virtual Reality Modeling Lan-
guage), JavaTM 2D and 3D, and Microsoft DirectX r©. Using these packages
(we will focus on OpenGL/OpenGL-ES and Java 3D/J2ME/JSR184) users
can write their applications in C++ C++, or Java and integrate these li-
braries and API, design a 3D scene, display it on a screen, and interact with
it [9].

The basic API that a general-purposegraphics library can provide are usu-
ally for image creation and management. These functions are called graph-
ics primitives. They usually provide functions for representing and drawing
points, lines, curved lines, polygons, circles, and different kind of shapes de-
fined by an array of points. They also include color-filling tools (for polygons
and closed areas) and sometimes basic 3D shapes like cubes, spheres, and oth-
ers. The graphics primitives also use attributes to specify colors, line styles,
and filling patterns. In addition, we usually find API for geometric transfor-
mations such as changing the size, orientation, and position of a shape or a
set of shapes. There are API for viewing transformations, which are useful
for setting up a 3D scene. They provide functions for selecting the point of
view (the camera position) and type of projections to be used (e.g., parallel
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or perspective). Other API are provided for clipping, in order to determine
the visible surfaces, and lighting for specifying the source and kind of illu-
minations. There are API used for input functions, which manage the keys
pressed by the users, interfaces, and the mouse. There are finally functions for
initializing the screen and managing refresh rates and color palettes, usually
called control API.

An important issue with geometric modeling is how to represent the geo-
metric description of the objects to be displayed. A point usually needs two
coordinates to be displayed, a rectangle is specified by its corner coordinates
(two vertices, left-top and right-bottom), and a sphere by its center and a
radius. Usually graphics packages use the Cartesian-coordinate system and
if coordinates are expressed in a different reference space such as a sphere,
then a coordinates conversion function is needed. The process of modeling a
scene requires using different reference coordinates. In the first step we define
the shape of our objects, drawing or modeling each object with its own ref-
erence space. These reference spaces are called modeling coordinates. We
can build a model of the scene by placing each object in the scene reference
space. This process involves transforming the modeling coordinates in the
scene reference frame, the so-called world coordinates, where we can place,
in different positions and orientation, the shapes of our modeled objects. For
example we can build a robot, as shown in Figure 1.2, by defining each of its
parts (base, upper body, arms, and thumbs) in modeling coordinates, and then
join all the parts in the world coordinate space. We can define the arm once
in the modeling space and then place two instances of the same object with
different locations (close to the left and right side of the body) in world coor-
dinates. For a better representation and a clearer model of how to assemble
the modeling parts in the world coordinate space, we could use a structure like
a directed acyclic graph (DAG), or a tree showing the connections between
parts of the model. We could express our coordinates in whatever measure
we need, so, for instance, for one scene, our coordinates could refer to meters,
while in another it could be kilometers or miles. It is up to us to decide how
to interpret the world coordinate locations.

After computing and transforming the scene in world coordinates, there
is a process composed of various routines, where usually the output of one
routine serves as the input to other routines, in order to transform the scene
for different output devices. This process is called the graphic pipeline.
First, a view of the scene is built converting the world coordinates in the
viewing coordinates, corresponding to the position and orientation of a
virtual camera. This process gives us the scene with respect to the desired
point of view. Then the viewing coordinates are projected onto a 2D space,
which is the one displayed by the graphics output devices (e.g., graphic cards
and screens). After this step, the coordinates are normalized to lie in the range
[−1,1] or [0,1] and depending on the kind of graphic device used. Moreover,
we have to identify visible surfaces in order to properly display the scene,
and remove the surfaces outside the selected view. Finally, the graphic system
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Fig. 1.2. Modeling an object by its parts. (a) The direct acyclic graph. (b) The
tree associated with the model.

needs to have all the graphics information converted in the refresh buffer
to actually be displayed. The coordinate system for the display devices are
called device/screen coordinates. An example of a typical graphic pipeline
is shown in Figure 1.3.

Fig. 1.3. The transformation pipeline from modeling coordinates to device coordi-
nates projection for displaying a 3D scene.

1.3.2 Rendering Pipeline.

We will now focus on the steps needed to transform an object geometric de-
scription into an image rendered on the screen. This process is called Render-
ing Pipeline. The OpenGL pipeline structure is a clear and effective example
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of a rendering pipeline, and we will use it for explaining the basic concepts
of rendering. OpenGL is structured as a finite state machine, and thus pa-
rameter values can be considered as states and language commands act as a
transition changing the current state. For example, setting a color value to
red (set color) will affect all subsequent instructions and geometric primitives
until a new color is selected. This behavior holds for every primitive parameter
(color, shading, transparency, lightning, material, etc.).

The OpenGL rendering pipeline includes: per-vertex operations and as-
sembly primitives, per-pixel operations, rastering, per-fragment operations,
and frame buffer operations.

Fig. 1.4. OpenGL rendering pipeline.

The rendering process includes two types of input:

1. Spatial coordinates, which means vertexes and points
2. Images, pixels, and bit maps.

Geometric operations, so called per-vertex operations, convert the vertexes
(Figure 1.4 small dashed rectangle) into geometric primitives. The lighting
computations take place also in this phase, since the normal vectors with
respect to the vertexes are needed in order to compute light intensity and
direction. Moreover, the light effect onto the materials is computed to render
a photo-realistic scene.

Per-pixel operations (Figure 1.4 big dashed rectangle) compute the pixel
transformations, as initially images are stored in memory as an array of pixels.
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The two processes, per-vertex and per-pixel, are then combined together
in the rasterization process, and both vertexes and images (pixels) are trans-
formed into fragments. Each fragment represents a pixel in the frame buffer.
The frame buffer holds the image frame that will be displayed on the screen.

The per-fragmentoperations will fill polygons (output from the rasteriza-
tion phase) with colors and compute the antialiasing1 if needed. Each fragment
is associated with a color. Usually triangles are used as polygon output from
the rasterization phase, since they have simple shapes and computations are
faster (Figure 1.5).

Fig. 1.5. Usually triangles are used as polygons output from the rasterization phase.
The object model of the hand is downloaded from [44].

Before writing fragments into the buffer, textures will be considered. Tex-
tures are images (like a bit map that could represent a material or a logo)
that can be copied onto pixels for obtaining a more photo-realistic rendered
scene (Figure 1.6).

After considering textures, the frame buffer is filled with fragments, and
finally it is copied into the video memory to produce the 3D scene.

We can subdivide a 3D scene rendering in many levels of photo-realism:

• Orthogonal wire-frame rendering
• Perspective wire-frame rendering

1 Antialiasing is a smoothing effect; it makes everything look less jagged.
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Fig. 1.6. 1: A bit map image for the wood. 2: 3D objects with wood textures and
shading.

• Depth cuing and hidden surfaces
• Lighting models
• Textures

1.3.3 Wire Frame.

The first rendering level is called wire frame, in which a three-dimensional
shape is described by a geometric model made of lines. In the basic version,
wire-frame rendering consists of representing all vertexes included in the ge-
ometric model; it’s mainly used during interactive geometric modeling since
it doesn’t require many computational resources. Representing all vertexes,
the system displays lines, which practically aren’t visible, because they are
occluded by other opaque surfaces.

This kind of representation is also very useful for technical drawings, in
particular for managing orthogonal projections. The main limit of the wire-
frame technique is in representing the scene depth effectively, and thus it’s
not clear which polygon faces are visible and which are invisible faces of a
surface, as shown in Figure 1.7.

During modeling of three-dimensional scene surfaces, it is important to
be able to change parameters referring to a certain surface in order to shape
vertex and surface orientation by using geometric normals.

1.3.4 Depth Cuing

The depth cuing technique is frequently used when the computational costs
for removing invisible lines (occluded by other surfaces) from the scene are
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Fig. 1.7. A wire-frame representation.

high. It consists of assigning to every segment a gray color whose saturation
increases with depth in the scene. This technique is inspired by the perspective
technique used by Leonardo Da Vinci, and helps in understanding proportions
among different parts of a complex scene. The solution consists usually in
giving high brightness levels to segments close to the front plane (with respect
to the observer) and low brightness to those close to the back plane; all the
other segments have intermediate values according to their depth in the scene,
as shown in Figure 1.8.

1.3.5 Hidden Surfaces

Hidden surfaces have been a severe problem for a long time, especially for
their computational complexity; today it is manly solved by using dedicated
graphics processors and the z-buffering technique.

To solve this problem, many approaches have been researched. The hidden
surface removal problem could employ many solutions that involve different
efficiency levels depending on the consistency of a scene. The concept of consis-
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Fig. 1.8. Depth cuing effect on a lighthouse model.

tency is very interesting, and it’s usually expressed in many ways in computer
graphics. It consists of matching individual and relative surface positions and
orientation.

There are eight kinds of scene consistency in three-dimensional modeling
that could be used for solving the hidden surface removal issue [10] (Fig-
ures 1.9). To clearly understand these kinds of consistencies, we recall that
the scene is evaluated after perspective transformations, just before planar
projections, and thus depth information is preserved.

The consistency properties are as follows:

• Consistency among objects: if two objects are spatially split, then each ob-
ject face is spatially split (for hidden surfaces, if two objects don’t overlap
each other, their respective faces don’t overlap).

• Consistency among faces: generally properties of a face change gradually,
from one position to another (if two faces overlap each other in one point,
it’s likely that overlapping will be spread all over the face; this could be
tested very quickly).
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Fig. 1.9. An example of a scene without hidden surface removal.

• Consistency among vertexes: the visibility condition of a vertex changes
only if the vertex perforates a face or if it intersects another visible vertex.

• Consistency among intersecting vertexes: if one face perforates another
one, their intersecting vertex could be computed by two intersecting points
(thus the face intersecting computation is faster).

• Consistency among scanning lines: visible objects along a scanning line
are likely to remain in the subsequent scanning line.

• Area consistency : a group of pixels that are close to each other is usually
covered by the same visible face.

• Depth consistency : portions of the same faces close to each other are also
close in depth, while different surfaces positioned over a projection plane
are usually distinguished in depth.

• Consistency among frames: two projections of the same scene computed
from two different viewpoints in a sequence of frames are likely not to
differ so much; in fact, computations made for a frame could be partially
reused for subsequent frames.
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The main limit of hidden surface removal consists of the theoretical need
to compare each couple of surfaces. This means that in a scene including a
relevant number of surfaces (such as triangles), there are many comparisons to
be performed. If we consider n triangles in a scene, the number of comparisons
is of the order n2; thus a typical scene having around 10, 000 triangles would
require 100, 000, 000 comparisons.

The property of consistency among objects, for example, could reduce
comparisons among faces by comparing bounding boxes surrounding objects.
If they are disjointed in projection, there’s no need to have more comparisons
since all faces of objects are disjointed.

Consistency among scanning lines is used in the z-buffering algorithm,
proposed in 1974 by E. Catmull; for its efficiency, it has been directly imple-
mented in a graphics card for supporting real-time 3D scene rendering, as we
will see in the next section.

With z-buffering, the graphics processor archives the z-axis value of each
pixel in a specialized area of memory called the z-buffer . Different objects may
have the same (x, y) coordinates, but with diverse z-coordinate values. The
object with the lowest z-coordinate is in front of other objects, and therefore
is selected to be displayed.

1.3.6 Lighting Models

The lighting model for each primitive vertex of the corresponding color is com-
puted by considering the attributes of the material and lights. Vertex lighting
information requires defining the geometric normals in order to manage the
object reflections for the selected vertex.

Usually there are four lighting types [11]:

1. Ambient: light that comes from all directions equally and is scattered in
all directions equally by the displayed objects. It’s a first approximation
for light that comes fairly uniformly from the world and arrives onto a
surface by bouncing off so many other surfaces that it might as well be
uniform.

2. Diffuse: light that comes from a particular point source (like the sun)
and hits surfaces with an intensity that depends on whether they face
toward the light or away from it. However, once the light radiates from
the surface, it does so equally in all directions. It is diffuse lighting that
best defines the shape of 3D objects.

3. Specular: as with diffuse lighting, the light comes from a point source,
but with specular lighting it is reflected more in the manner of a mirror
where most of the light bounces off in a particular direction defined by
the surface shape. Specular lighting is what produces the shiny highlights
and helps us to distinguish between flat, dull surfaces such as plaster and
shiny surfaces like polished plastics and metals.
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Fig. 1.10. A wire-frame scene from a 3D version of the PACMAN game.

4. Emission: in this case, the light is actually emitted by the polygon equally
in all directions.

Figure 1.10 and 1.11 show not only z-buffering but also lighting effects,
solid colors and Figure 1.12 and 1.13.

1.3.7 Textures

Texture mapping is an approach for adding realism to a computer-generated
graphic. An image (the texture) is mapped to a geometric silhouette that is
created in the scene, so it is glued to a flat surface.

The resulting pixels on the screen are calculated from the texels (pixels of
a texture), and is managed by texture filtering. The fastest method is to use
exactly one texel for every pixel, but more complex techniques exist.
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Fig. 1.11. The same scene as Figure 1.10 (with a slightly different viewpoint), after
applying z-buffering.

1.3.8 Mobile Graphics Software

There are several standards emerging in the mobile market today. Mainly
these come in the form of API, that can be integrated using different kinds
of programming languages like C, C++, or Java. To develop graphics appli-
cations and games, programming skills are required, but they aren’t the only
thing these kinds of applications need; content and graphics designers are also
required. Thus newer standards can be considered as a framework integrating
imaging, animation, and geometry representations with programming API.

OpenGL is a well-known platform for people working in 3D graphics and
games; graphics workstations used to have video cards supporting its API. In
recent years the OpenGL library has grown, with a lot of new API, including
API that are rarely used by programmers. There is also plenty of reference
material available in the form of books, tutorials, and ”how-to” documents
downloadable from the Internet.
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Fig. 1.12. A lighthouse model with solid colors.

Recently there has been much discussion about 3D graphics in the emerg-
ing mobile market. It was unclear how to provide a good user experience
using graphics and games on handhelds with relatively small screens and lim-
ited processing power. These issues generated uncertainty in the graphics and
games developer communities for mobile device manufacturers who wanted to
start integrating 3D features into their applications.

To address these issues, a consortium of companies called Khronos de-
veloped a version of OpenGL for embedded systems, the so-called OpenGL
ES. OpenGL ES is a standard API set for advanced 2D and 3D graphics on
handhelds and mobile devices, providing graphics interfaces between hardware
and software [12, 13]. Both programmers and content creators need tools for
design and development, using state-of-the-art techniques on mobile devices.
OpenGL ES satisfies these requirements, allowing them to create their best
applications and games incorporating what I call the ”mobile gravity rule.”
This rule describes interaction among objects, where the force is the inverse
of the distance. In our case the inverse is in between the screen size and the
software rendering capabilities. The smaller the screen, the higher is the pro-
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Fig. 1.13. The same scene as Figure 1.12 after applying texture mapping.

cessing power per pixel needed to maintain a good graphic rendering of the
scene. Since the Khronos group was started, the OpenGL ES standard has
received wide support from over 50 companies including Nokia, Ericsson, Mo-
torola, Qualcomm, Sun Microsystems, as well as the Tao Group, Symbian,
Fathammer, Superscape, and Vicarious Visions. These companies are work-
ing together to make OpenGL ES a royalty-free open standard for the mobile
3D graphics applications and to show the advantages of OpenGL ES to the
mobile developer community.

The OpenGL ES specification is freely available for download, so anyone
can develop applications based on it, royalty-free 1.14. The goal of OpenGL
ES is to take into account the real capabilities of mobile devices such as
no dedicated floating-point hardware (although ARM vector floating-point
coprocessor-enabled devices could also support floating point) and lack of
memory. It includes the minimum set of API needed for development of mobile
graphics. Since OpenGL ES has low level API, programmers can get close to
the hardware for high performance applications such as interactive software
and games.
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Fig. 1.14. OpenGL and OpenGL ES roadmap.

The OpenGL ES API defines a graphics processing pipeline (Figure 1.15),
supporting individual calls to be executed on dedicated hardware, run as rou-
tines on the system CPU, or implemented as a combination of both dedicated
hardware and software routines. This means that software developers can use
a software 3D engine today, and seamlessly transition to using OpenGL ES
hardware-acceleration on future devices. Moreover, OpenGL ES enables new
hardware innovations to be accessible through the API via the OpenGL exten-
sion mechanism. As extensions become widely accepted, they are considered
for inclusion into the core OpenGL ES standard.

From a developer point of view, in order to use these API the mobile device
OS must be open and allow users to install new applications. Usually mobile
devices, and especially mobile phones, are closed in this sense, but things
have started to change. Open platforms such as Symbian OS and Java ME
(Micro Edition) are counterexamples and adopted standards. Jumping ahead,
developers could not only develop using OpenGL ES API but also support
the specification JSR-184 as a 3D API for J2ME (Java 2 micro edition, Figure
1.16).

The OpenGL ES standard API is at a lower level than the J2ME ex-
tension, JSR-184 API for mobile 3D graphics. The two different technologies
integrate into the mobile graphics pipeline at different levels, and thus they
can be combined. This book is mostly about how to use 3D graphics API for
developing cutting-edge 3D graphics applications without losing good graph-
ics quality. You will learn about developing computer graphics applications for
mobile devices using examples taken from different API. We will concentrate
on researching how to simulate or enable quality 3D features that we usually
find on our desktop applications.

In fact, OpenGL ES is fundamental for standardized access to hardware
acceleration solutions for mobile devices. However, coding all the graphics
data into a low-level application can result in a huge file requiring too much



26 1 Mobile Graphics Applications

Fig. 1.15. Mobile 3D graphics pipeline layers.

memory for a mobile device or too much bandwidth needed for transferring
among devices. JSR-184 helps in this case because it allows graphics design-
ers and developers to define a scene with a platform-independent set of API
(Java-based), simplifying the production and distribution of contents. JSR-184
stands on top of OpenGL ES API, and a device supporting both standards will
benefit both from hardware acceleration and an abstraction layer. Moreover,
both API enable applications to run on products ranging from mobile phones
to workstations, making it easy and affordable to offer a variety of advanced
3D graphics and games across all major mobile and embedded platforms [13].

Fig. 1.16. 3D graphics games developed with OpenGL ES and JSR-184 on mobile
devices.

One question to address is, considering the resource-limited handhelds,
how can they efficiently run Java programs, as they tend to be slow even on
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graphic workstations? In fact, usually Java programs require more processor
overhead in order to run. On the other hand, there is a need for features like
a scene graph representing the geometric structures, hierarchies, and camera
points of view of objects in a 3D scene. JSR-184 is the answer; it is a higher
level set of API and thus programs written on top of this specification can be
reused on many different devices. The JSR-184 is complementary to OpenGL
ES, and the rendering modes are compatible, so the graphics hardware that
accelerates OpenGL ES will also accelerate JSR-184 API. Three-dimansional
graphics on mobile devices are rapidly growing in response to market demand.
JSR 184 is already a requirement for major operators worldwide, and devices
that implement the API are already on the market.

In the following chapters we discuss how researchers and developers can
build 3D graphics applications that perform well on mobile devices, resolv-
ing issues concerning limitations in display size, number of colors, processing
power, and the power consumption of handheld devices.

In particular, some of the subjects we discuss include setting up a graph-
ics window; managing color, rotation, and translations; building 3D shapes,
texture mapping, filtering, and lighting; blending, loading and moving in 3D
space; display lists, bit-map fonts, 2D texture fonts, fogging models, quadrics,
particle engines, lines, and antialiasing; bump-mapping and multi-texturing;
morphing and loading objects from a file; clipping, reflections, and shadowing.

1.4 Summary

In this introductory chapter, we have surveyed the major hardware and soft-
ware features of mobile and handheld devices. Different kinds of hardware,
such as handhelds, smart phones and mobile phones, have been discussed.
The three major operating systems have been presented in order to have a
clear idea of the platform strengths and limitations on top of which we will
build our mobile 3D graphics applications. We discussed standard graphics
software packages and presented a model for the coordinate system pipeline.
Graphics programming packages require coordinate specifications to be given
in a Cartesian reference frame. We discussed the many different changes in
the coordinate systems from the model to the rendering of the final 3D scene.
We explained that functions available in graphics programming packages can
be divided into graphics output primitives, attributes, geometric and mod-
eling transformations, viewing transformations, input functions, and control
operations. Concerning software packages, we described the OpenGL library
consisting of a device-independent set of routines for managing 3D graph-
ics. We then focused on mobile 3D graphics presenting the main issues, both
from the performance and the appearance points of view, considering the lim-
itations of handheld devices. We described the main software packages that
will be presented in this book, the OpenGL-ES and JSR-184 specifications.
These packages work well together, providing both low- and high-level access
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to mobile graphics features. We will explore how to obtain graphics results on
mobile devices as good as those on workstations.



2

Mobile 3D Graphics: Scenarios and Challenges

2.1 Application Scenarios

Many application fields can benefit from mobile 3D graphics, and some that
are already adopting the technology include, mobile tourist guides, augmented
reality, and mobile gaming.

In the last few years, tourist guides on mobile devices, also called mobile
guides, have aroused a lot of interest in the research field, both in industry
and academia. The main advantage of mobile guides versus traditional guides
consists in offering updated services using handheld devices, that are easy to
carry, like the PDA or new-generation mobile phones. We can identify two
kinds of services provided by a mobile guide:

• Navigation support: provides users with driving directions.
• Information delivery: provides users information on points of interest, like

banks, gasoline stations, hospitals, etc. in the user’s vicinity.

Until now, all the graphics representations in these services were made of
2D maps with text labels. With the introduction of 3D graphics capabilities
in mobile devices, many researchers found that using 3D modeling with the
mobile guides allows user interfaces to be more intuitive and friendly for these
kind of applications. Many usability studies have shown that 3D environments
help in understanding real spatial relationships, and thus could help users in
navigating both the interfaces and the environment. In fact, by using a 3D rep-
resentation, the viewer’s perception of the environment improves, since users
can better understand distances and proportions between objects visualized
by the mobile guide and the real environment.

An example is the prototype of a 3D city, built by Vainio and Kotala [14],
using a three-dimensional city model, a map, and a database. The scope of the
prototype is to help users in navigating the environment, showing information
on surrounding geographic space by a real-time link between the 2D map
and the 3D visualization, as shown in Figure 2.1. The prototype running
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on a PDA allows users to see the screen split in two different parts: in the
upper part there’s the 2D map, and the lower part displays the 3D model
of the surrounding area. Usability tests provided with this study show how
users prefer to manage the 3D model combined with the 2D map rather than
choosing one single view, either the 2D map or the 3D model. Moreover, users
can clearly identify their position and orientation using the 3D virtual model
rather than the 2D map.

Fig. 2.1. The user interface for the 3D City Info research project.

The research group at the HCI Lab of Udine [15], Italy, has developed an-
other mobile guide prototype, which is context sensitive and uses 3D graphics
for rendering the user’s surrounding areas. This prototype allows users to in-
teract with virtual displayed objects by selecting them directly and obtaining
textual information.

It’s interesting that in this prototype we can identify three main navigation
modalities:

• Manual navigation: the user can manually change the point of view in the
3D virtual environment.

• Automatic navigation: a global positioning system (GPS) is used in order
to react in real time to the new user position and display it in the virtual
environment.
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• Replayed navigation: the system uses prerecorded positions and orienta-
tions or paths designed by a human guide, or by the user in order to display
a virtual tour in the environment.

It’s clear how 3D views are relevant, especially for the latter two modalities,
where the user could choose to have a snapshot of the areas of interest before
reaching them, and plan the visit or make virtual tours seated at home in his
favorite chair.

The future direction of mobile guides will involve all the algorithms and
techniques that we will describe in this book, both at visualization and inter-
action levels.

In fact, as researchers suggested, in some situations the user might want to
see a map larger than the city model and thus the interface should be adapt-
able to meet his needs. In other cases the user might want a three-dimensional
model, instead of a map, in order to find a specific place like a fountain or an
ancient front door. An example could be the Google Earth application [16],
where users, by means of zooming, can start from the visualization of the
whole earth and navigate, finally reaching a house. Thinking at this level, if
the user can zoom more deeply until reaching a fountain 3D model, it would
really be useful. This is a clear example of how integrating zooming with
different resolution graphical levels could increase and enhance the user’s ex-
perience. It turns out that with this approach the user could directly select the
objects of interest in the 3D representation. In fact, as suggested by previous
research, the easiest way for the user to ask for information about a building
or some other point of interest is to point at it with the finger. The use of a
stylus could replace the finger in the virtual model representation.

Another desired feature relates to proximity. When a user gets closer to
a building, the point of view and the perspective must change following the
natural inclination of the head. In fact, getting closer to buildings or churches
we tend to look upward to the roof and change the perspective while moving
in order to have a complete view of the subject. This again helps in developing
a 3D effective visualization of the surrounding scene in a mobile guide, and
with the technology provided by new mobile graphic libraries we can achieve
results comparable to those done on a desktop computer.

Augmented reality (AR) is a research field that aims to combine real-
world information with computer-generated data to enhance perception of
the surrounding environment. The main idea involved with augmented reality
is about enriching the user’s experience with computer-generated information.
Usually this happens using special head-mounted displays (HMDs).

Initially, AR was introduced apart from virtual reality; instead of immers-
ing a user in a virtual environment, the goal of augmented reality is to enhance
the real world with information not available in reality. Someone suggested
that virtual reality is a special case of augmented reality since the AR adds
to the real-world virtual information that virtual reality reproduces. A simple
example of AR is a football game on TV. The real-world elements are football
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players and the field, while virtual elements are the lines displayed during the
replays to highlight penalty analyses, such as players’ being offside, or circles
displayed to show the right distance to maintain for the penalty kick or the
partial score displayed on the field.

Milgram and Kishino [17] describe a taxonomy that identifies how AR and
virtual reality are related. They define the reality-virtuality continuum shown
as Figure 2.2.

Fig. 2.2. Milgram’s reality-virtuality continuum.

The real world and a virtual environment are at the two ends of this time-
space extension, with the middle region called mixed reality. Augmented real-
ity is placed near the real-world end of the line, with the main perception being
the real world augmented by computer-generated data. Augmented virtuality
is a term created by Milgram to classify systems that are generally synthetic
with some real-world graphics added such as texture-mapping video onto vir-
tual objects. This is a differentiation that will disappear as the technology
improves and the virtual objects in the scene become less detectable from the
real ones. Milgram further describes a taxonomy for the mixed-reality displays.
The three axes he advocates for grouping these systems are Reproduction
Fidelity, Extent of Presence metaphor, and Extent of World Knowledge. Re-
production Fidelity describes the quality of the computer generated imagery
ranking from simple wire-frame approximations to entire photo-realistic ren-
derings. The real-time requirement on augmented reality systems forces them
to be almost the low end on the Reproduction Fidelity spectrum. The current
graphics hardware power cannot produce real-time photo-realistic renderings
of the virtual scene. Milgram also assigns augmented reality systems on the
low end of the Extent of Presence metaphor. This axis assesses the level of in-
volvement of the user within the displayed scene. This classification is closely
related to the display technology managed by the system. There are consider-
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able classes of displays employed in AR systems. Each of these contributes to
a different sense of immersion in the display. In an AR system, this situation
can misdirect because with some display technologies part of it is the user’s
explicit view of the real world. Immersion in that display arises simply by
looking at the scene. It is differentiated to systems where the combined view
is displayed to the user on a separate monitor for what is sometimes called a
”Window on the World” view. The third, and final, dimension that Milgram
adopts to categorize mixed-reality displays is Extent of World Knowledge.
Augmented reality does not simply denote the superimposition of a graphic
object straight onto a real-world scene. This is technically an easy task. One
problem in augmenting reality, as described here, is the need to conserve pre-
cise registration of the virtual objects with the real-world image. As will be
explained, this often includes accurate knowledge of the relationship between
the frames of reference for the real world, the camera viewing it, and the user.

We can figure, as we will see in this discussion, that AR applications with
mobile devices will be placed at the high end of the Extent of World Knowledge
metaphor.

Today, many systems and applications have been studied for AR. Usually
they include the use of a single personal computer, usually a notebook, con-
nected to external environment sensors and devices like custom display-based
glasses that show the real environment plus some virtual information.

The existing AR systems need a cumbersome hardware infrastructure, thus
limiting the arm and body movements in the real world. Another problem is
that this kind of system is very expensive, and this is a limit in developing
these technologies. Indeed there exist situations or social environments where
these expensive and awkward technologies are inadequate. The best solution
will be to use lightweight devices and thin clients1 easy that are to carry or
wear with an adequate network infrastructure.

The mobile devices and capacity-enhanced graphics are accelerating the
development of augmented reality systems on personal digital assistant (PDAs)
and smart phones. From a mobility point of view, a PDA is easier to carry
than a notebook and doesn’t limit movements since it is light enough to be
carried in the hand.

One of the first institutions to study so-called handheld augmented reality
was the Vienna University of Technology, with the development of an ap-
plication for 3D navigation in a predetermined environment. Daniel Wagner
and Dieter Schmalstieg [18] described the first stand-alone AR system with
self-tracking running on an unmodified PDA with a commercial camera. The
project exploited the ready availability of consumer devices with a minimal
need for infrastructure. The application guides a user through an unknown
building by showing a variety of navigation hints, including a wire-frame visu-

1 A thin client is a computer (client) in client-server architecture networks which
has little or no application logic, so it has to depend primarily on the central
server for processing activities.
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alization of the building structure superimposed on the video image, together
with labeling of relevant elements and highlighting of the next exit to take,
as shown in Figure 2.3.

Fig. 2.3. The application called Signpost [18]; showing the environment overview
map.

Another interesting example of AR is a game called the Invisible Train [19]
(2.4). The game uses several PDAs with displays pointing at a small railroad.
The displays serve as a virtual lens showing two small 3D trains that users
can drive using the touch-sensitive display. They can increase or decrease
speed, and avoid collisions. The players’ PDAs are synchronized via a wireless
network.

All these studies and implementation have been developed on top of cus-
tom framework software that has performance problems with 3D visualization.
This is due to the fact that at the time when these projects were being de-
veloped there weren’t standard and efficient graphics libraries for 3D graphics
on mobile devices. And again we will see how using these new standard ap-
proaches and technologies will help in developing AR applications and take
advantage of the light and compact nature of handheld devices, without major
limitations.

The mobile gaming and more generally the mobile entertainment field are
contributing to and pushing for development and enhancements of mobile
hardware and software platforms. Many software companies and video card
manufacturers have invested a remarkable amount of money in developing
interactive and high-end graphics applications to try to obtain the same good
results as those achieved for desktop computers and gaming consoles, dealing
with problems that will be discussed later in this chapter.
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Fig. 2.4. Two PDAs running the Invisible Train game [19].

Moreover, many market studies have predicted that the earnings, at a
worldwide level, for mobile video games will rise from $500 million in 2002 to
$2 billion in 2006. In fact, if we look at Tetris, a simple two-dimensional mobile
game by Blue Lava, we can see that it obtained one million paid downloads
in less than one year.

One of the main aspects of this market and the reason for the huge amount
of investment is the wide potential audience for games. Many companies have
estimated that the annual purchase of mobile devices and PDAs will be be-
tween five and six millions of units yearly. The desktop computer market is
about two million units per year, which is why there is so much interest and
investment in mobile devices and mobile gaming and entertainment particu-
larly.

The Game Developer Association [20] has recently released a white paper
on the status of the mobile gaming industry describing the issues concerning
these new technologies as well as the advantages and benefits that the mobile
technology could lead to. Mobile games design and development, while having
many similarities with the computer games industry, also has many issues to
be addressed that are different and new. The design and development of mobile
games has to deal mainly with the product life cycle, which is short, from 4
to 12 months, more or less half that of the consoles or desktop PCs. This
is similar to mobile phones market, where the last product on the market
becomes obsolete in few months.
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Other issues are related to the variety of mobile devices on the market, with
each supporting different standards. Moreover, we need to think about the fact
that every device could be used in a different worldwide location, so developers
have to think about localization (languages, interfaces, ...) and packing all this
information in a resource-limited device. There are advantageous marketing
possibilities: people can buy a game to be played once, or they can take a
pay-per-play subscription and even pay with micro-payments, like using Short
Message Service (SMS), for buying video games. So the distribution is very
cheap and simple, because a game could be easily downloaded from the mobile
network.

The vast majority of games today utilize 2D graphics, have no or very little
multiuser capability, and are very simple. However, this is changing rapidly,
and there are now a significant number of ground-breaking games that em-
ploy 3D graphics, multiuser features such as turn-based play, and community
features such as shared high-score tables and opponent selection. The possi-
bilities that a mobile device could provide in terms of gaming compared to
a console are wider, especially considering multiplayer gaming. For example,
Nokia has recently released a new game titled HinterWars [21]. It is the first
multiplatform PC and mobile game that allows people to play with millions
of other people, both from their home desktop PCs or alternatively with the
mobile device Nokia N-Gage. For the first time ever, a game uses the real
mobility concept; it can be played in every location: from home with your
own PC, but also on a bus or, taxi, or at the office via the network.

Since mobile devices are network-based devices, it seems obvious that mul-
tiplayer gaming would expand into the Internet world. There are still some
problems to overcome in mobile multiplayer development, like power consump-
tion and latency. These issues have to be considered during the mobile games
design phases in order to provide users with real-time feedback to their ac-
tions. Even if new standard networks are developing, like 3G, they still aren’t
supported worldwide, so for now designers have to manage network latency.
Many games now offer a centralized high-score table to compare results from
users in different locations, thus enabling players to compare their results,
therefore stimulating the competition. The challenge is to be able to create
first-person shooters, racing games, and real-time feedback games where high
frame rates are a key to achieving high throughput of data.

An interesting variation of multiplayer games are community games.
Teams or groups of users will play together for the goal of the game, sharing
their playing experience fighting or being allied for a common aim. Technolo-
gies like SMS and global position system (GPS) could be used in conjunction
to provide players a whole new set of experiences, like playing virtual games
in the real world.

Community players often, if not always, connect and link to others in
pursuing a game target together; this highlights the entertainment capabilities
of mobile devices and raises the demand for including 3D graphics support on
the mobile devices.
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The actual mobile devices are not so ready to deal with three-dimensional
entertainment applications. There are still many issues related to the applica-
tion’s usability, such as input devices that are uncomfortable for their small
size, especially for dealing with 3D graphics interactions. Also the performance
isn’t capable of dealing with fast 3D scene rendering; they’re slow compared to
medium-resolution desktop PCs. The main enhancements should be provided
both at the design and the hardware level to fill this gap.

Usability is fundamental for PDAs [22] and mobile devices. For example,
consider integrating e-mails, instant messaging, online navigation, and voice
telephony all in single device. There are already devices, on the market capa-
ble of supporting all these features, but many times they’re not very usable.
For instance, screens are still too small to browse the Internet or read long
e-mails without the need for continuous scrolling. Wider screens will work
around these issues but designers will probably have to deal with power con-
sumption. For many input tasks it seems that QWERTY keyboards enhance
usability, like writing emails or dialing a phone number; also for editing it
still seems a preferred solution compared to the stylus with a ”graffiti” lan-
guage to learn (which also has to manage hand-writing noise and errors). New
approaches for full navigation on the Web are preferred to support wireless
application protocol (WAP) technologies; in fact you can see more informa-
tion on the screen and go to the next page easily, but pages are still slow to
download so that exploring a Web site could be very tedious with a mobile
device. There is still a need for a better input device; in fact, online Web
sites require long scrolling, and even new tilt scrolling devices (devices that
sense the user flicking on them) still aren’t good at it. The best solution today
would be for content providers to summarize their information and shorten
their Web pages to facilitate the mobile user’s experience. Moreover, there’s no
particular tight integration between mobile devices and desktop PCs; usually
the synchronization of information is related only to some kind of application,
while wider support for this is absolutely required. Otherwise there will be
a complete disarrangement in the information users keep on their PCs, thus
missing the main goal of a mobile device: allowing you to work with your
data or playing your favorite game wherever you are. Finally, there’s a need
for integration among communication features like SMS and e-mail, for in-
stance automatically recovering a phone number of the sender of your last
received e-mail. The best integration will probably be a mixture of actions
between mobile device designers and content or Web-site managers, such as
shortening the published articles, simplifying navigation, and determining the
relevant features for mobile devices related to the desired tasks.

There are plenty of new mobile devices on the market that are starting to
support 3D graphics technologies.

The ability to support playing games is obviously the core requirement for
such games, but 3D graphics with realistic scene rendering clearly enhance
the gaming experience.
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Java 3D is supported by using M3G, the Mobile 3D Graphics file format.
M3G is available on new handsets from MotorolaTM, SiemensTM, NokiaTM,
and Sony EricssonTM, among others. M3G also includes a good conformance
testing suite, so that there is high degree of compatibility between the M3G-
enabled mobile devices. Writing 3D games is fairly similar to writing 2D
games; there are assets, game artificial intelligence (AI), and a user inter-
face. The difference is in the rendering and management of the scene. These
are managed by an M3G engine, and the assets for the games also have 3D
models as wells as 2D bit maps. These models, as well as cameras, lights,
animations, surface materials, and appearance, are usually authored in a ded-
icated 3D tool, such as 3D Studio Max, and then exported to the standard
M3G file format. The M3G format is also available for public use, so devel-
opers can build exporters for existing tool chains. Thus they can port games
from other platforms, such as the GameBoy or PlayStation. We will show and
develop a simple customized M3G exporter in later chapters.

Another important standard library for mobile 3D Graphics is OpenGL ES
standard, and we will see that it is a cutting-edge technology for 3D mobile
graphics, not only as a new engine and set of API but also because it can
be downloaded and installed over the Internet. For this reason, each game
should support its own 3D engine, rather than utilizing the generic 3D engine
provided by M3G on Java handhelds. This has some advantages in that each
game can have a carefully customized engine to obtain maximum performance;
however, there is also downside in that the engine takes up additional space
on the handset, restricting further download. Also development costs can be
higher, as each engine tends to have its own authoring tool costs, even if it is
only a variation on an existing level editor, for example.

The next generation of mobile devices supporting three-dimensional graph-
ics will be based on the API that will be described in this book, as consequence
of a standardization process that is coming out from developers and designers.

Moreover, many new mobile graphics processors have been introduced in
the market, and many new generation devices are directly supporting 3D
graphics.

In conclusion, we can try to propose a design for a mobile device meeting all
the requirements that came out from our analysis, integrating and supporting
the three explored areas: mobile guides, augmented reality, and games.

The ideal mobile device will need to support at least a standard OS and
standard 3D graphics API. Moreover, it should provide features for playing
music, movies, and games. It will need to include effective input devices and
support for GPS positioning, not only for localization such as mobile guides
applications, but also for multiplayer GPS games where the real user location
is fused with game rules, providing augmented reality. This device should
also support standard wireless network connections and a small video camera
for interacting or recording. Finally, basic mobile phone capabilities should
be required, especially SMS facilities both for communicating and supporting
micropayments for applications downloading.
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2.2 Multimedia and Graphics Usability Challenges

The constant demand for multimedia data is growing exponentially due to
continuous enhancement of computing power of mobile devices and software
programs that manage such data. Multimedia data are now required not only
for commercial and marketing purposes, but also as important design data,
with which many applications are developed for example, digital movies, inter-
active videogames, and office automation applications. Such multimedia ap-
plications require an extensive amount of resources in terms of computation,
communication, and memory. But mobile devices still have some important
limitations: low bandwidth, power, CPU, memory, and storage [3].

For instance, to deal with the problem of the small screen, a number
of different techniques have been used. One is the use of a proxy system
[23] for preprocessing stages of multimedia objects. When considering text
data, the data could be reduced, filtered, or summarized [24], and videos
or images could be transcoded by managing frame size, bit rate, or frame
rate [25]. Data are presented in a card format on mobile devices, usually by
means of thumbnails for navigation. To run multimedia content efficiently and
effectively, in [26] metadata are used to validate and represent the multimedia
content. For instance, if the multimedia content is computationally expensive
it could be replaced by a simpler, less demanding version of the same content.

In many application fields, like digital photography, videosurveillance,
telemedicine, and many others, a proposed solution to deal with the image
processing needs and the limitation of mobile devices consists of so-called wire-
less imaging. In these applications it is crucial to be able to capture images
and videos and process them for extracting information, like raising an alarm
if there is an intrusion in a surveillance environment. To solve these problems
a distributed computation approach is needed since mobile devices might not
always be capable of performing real-time image processing. So the solution
consists of sending images or video frames to powerful servers that process
the data and send them back to the mobile device for displaying the results.

An interesting example [27] of an application is in disaster recovery sce-
narios. Consider a scenario of an archaeological disaster recovery. After an
earthquake, a team equipped with mobile devices (laptops and PDAs) is sent
to the disaster area to evaluate the state of the archaeological sites and precari-
ous buildings. Their goal is to draw a situation map to schedule reconstruction
jobs. Before this process starts, the team leader has stored all area details,
including a site map, a list of the most important objects at the site, and pre-
vious reports and materials. The team members’ PDAs let them execute some
operations but don’t have much computational power. Such operations, possi-
bly supported by particular hardware (for example, digital cameras, General
Packet Radio Service connections, computational power for image process-
ing, and main storage), are offered as software services to be coordinated.
After visual analysis of a building, team member 1 (using his or her PDA)
fills out questionnaires. The team leader analyzes these questionnaires, with
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the help of specific software, to schedule the next activities. One team mem-
ber takes pictures of the precarious buildings, whereas another team member
is in charge of the image processing of older and recent photos of the site
(for example, to initially identify architectural anomalies). In this situation,
matching new pictures with previous ones might be useful. So, the PDA with
the high-resolution camera and the PDA with the older stored pictures must
be connected, as shown in Figure 2.5.

Fig. 2.5. A disaster recovery scenario.

The mobility of handheld devices could be very useful in tasks like face
recognition, for instance where a fixed camera is less useful for capturing some
expression or using an optimal position compared to lighting and angles. One
may think for example of the police using a mobile device for capturing an
image of a suspect face while he is on a street, and this would require adapting
the image capture according to conditions in the environment. Moreover, to
make these kinds of computations in real time, image processing should be
optimized in order to be fast enough for capturing and processing information;
not only could application compiler optimization be used for enhancing the
capturing and processing of multimedia data, but also data could be sent
wirelessly to a central or proximity server that could process them and send
back results. Alternatively, the server could take some action based on the
image processing output.
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2.3 Algorithms and Architectural Challenges

In the last few years, many relevant steps have been taken toward design and
computation for mobile devices, not only at the technological level but also
in research fields. The computational power and communication capabilities
have been enormously increased, and also graphics performance and power
consumption have been constantly improved. But all these developments still
aren’t advanced enough to cope efficiently with real-time 3D computer graph-
ics. In fact, mobile devices don’t have processors able to process complex
mathematical computations; they can’t even store a large amount of data
(e.g., required for storing textures). Their screens are too small, with low res-
olution (screens are rapidly improving), and the batteries still tend to run
down very fast when dealing with 3D computer graphics (usually this is re-
lated to the large amount of computations required).

Among these problems the hardest challenge seems to be the power con-
sumption: mobile devices are following Moore’s law 2 both for computational
power and for storage or memory capacity, but progresses in battery technol-
ogy aren’t so fast; they increase about 10% in magnitude every year.

Another interesting challenge is the visual quality of image rendering. Ac-
tual displays of mobile devices have very limited resolution in graphics ren-
dering. Many common displays have a resolution of 176 × 144 pixels, while
usually the best resolution is of 320 × 240 (also called QVGA).

The only solution for increasing visual 3D rendering quality and increasing
the performance seems to be that of deploying 3D hardware acceleration. For
example, let’s consider the actual performance: the software implementation
for 3D rendering now can manage 1MPixel/s, reaching only a three-frame-
per-second performance on a VGA screen by saturating completely the mobile
device processor. Currently available graphics hardware could easily perform
at 100MPixels/s level.

The advantages of the hardware solution approach are numerous:

• Better performance: the processor work load is reduced since the pixel and
vertex operations are forwarded to chip specialized for graphics.

• Better image quality : advanced graphics functionalities could be imple-
mented during the rasterization phase, such as antialiasing or texture com-
pression.

• Reduced power consumption: hardware implementation is less power de-
manding than software implementation, which involves many other chips
in the process.

Hardware acceleration seems to be a good solution to the performance and
image quality challenges, but should be carefully implemented in order to fully

2 The observation was made in 1965 by Gordon Moore, cofounder of Intel, that the
number of transistors per square inch on integrated circuits had doubled every
year since the integrated circuit was invented.
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obtain all the listed advantages. In fact, at the design level one should consider
the limited resources available in a mobile device and other issues like overall
power consumption and costs; one could easily have a bad design, thus losing
the real advantages in supporting this hardware solution. It is thus necessary,
for this approach, to have full knowledge of the mobile device architecture in
order to identify bottlenecks at the design level and thus avoid wrong design
and implementation choices.

The mobile device architecture is very different from desktop computers.
It includes only one main memory unit, and the central processing unit (CPU)
with the graphic processing unit (GPU) are implemented on the same chip,
as shown in Figure 2.6.

Fig. 2.6. Mobile device VS Desktop PC architecture.

The main issues concerning the mobiledevices architecture are as follows:

1. Limited memory bandwidth. Exchanging data from and to the memory
is very time and power consuming.

2. Mobile device processor units don’t include a floating point unit (FPU).

The advantages compared to a more traditional architecture are (1) that
they are less data exchange demanding since it uses a lower graphics resolu-
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tion, and (2) that they have an easy and direct access to both the frame buffer
and depth buffer 3 since there is only one main memory.

To improve performance it is necessary to share the computation and tasks
among CPU and GPU units, reducing as much as possible the CPU work load.
All the computations about lighting and geometrical transformations could be
delegated to the graphic hardware, in the same way as for graphics card in-
stalled in desktop computers. Usually graphic cards include a programmable
unit called Transform and Lighting (T&L); which is in charge of the two
above-mentioned phases. It has to be noted that 3D graphics API usually
include profiles. Profiles are configurations that enable or disable certain fea-
tures depending on the performances and resources available for the target
device. For instance, the OpenGL ES includes two kind of profiles:

• Common-lite, which provides fixed point computations.
• Common, which provides floating point computations.

In general mobile devices don’t support a dedicated FPU (in the future
they’ll probably will), and thus the first profile is more suitable for them. The
first profile will also be very useful in producing lightweight mobile devices
appliances, and it is a good choice for smart phones and mobile phones in
general.

Floating-point operations could be also emulated by software, but using
many floating-point operations, if supported by emulation, heavily reduces
the performance. Where available, it’s better to choose fixed-point math. For
example, to reduce pixel data exchange (thus bandwidth), smaller textures
could be used, or to reduce pixel transformation, smaller rendering windows
are a good solution.

In the per-vertexes4 operations the goal is to simplify as much as possible
the objects, geometry by selecting the same vertex as often as possible. For
example, if we consider an approximation of a geometric shape with a triangle,
we could use triangle strips, as shown in Figure 2.7 [28], for building n trian-
gles using n − 2 vertexes. This reduces the number of vertexes and therefore
the number of computations. We could imagine that every time a transfor-
mation takes place (e.g., rotation) all the vertexes have to be transformed, so
the number of vertexes is proportional to the number of cycles required for
transformation process.

It is also useful to reduce the information data size for vertexes by choosing
the smallest data type possible. For instance, a short integer data type could
be used instead of a float. There are many designs that could be adopted in
developing graphics capabilities of mobile devices both at the programming
(algorithm) level and at the hardware architecture design level.

3 These concepts will be more formally introduced in Chapter 3, but they are
basically the memory portion containing the images to be rendered and the 3D
depth information.

4 So-called per-vertex operations convert the vertexes into geometric primitives.
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Fig. 2.7. Construction of Triangle Fan (left) and Triangle Strip (right).

2.3.1 Fixed-Point Maths

One the most useful and required features for a graphic application is to
be able to represent and precisely manage nonintegral (real)5 numbers. To
represent rational numbers, it is necessary to codify and manage the decimal
point position. There are mainly two solutions for this problem: the fixed point
representation, where the number of decimal digits is fixed, and the floating
point representation, where the number of decimal digits is not fixed. Instead,
a pair of numbers are used called the mantissa and the exponent.

In early 3D graphics approaches, when computers had low computational
capabilities, the fixed point representation was used, which was powerful
enough for the graphics tasks even if not so precise in numerical approxima-
tion. This representation became obsolete when processors started to have in-
creasing computational power and hardware units dedicated to floating point
computations (also called FPUs), thus increasing the numerical precision.

Nowadays many high-level programming languages natively support the
floating point representation. Mobile devices, instead, have all the issues de-
scribed in this paragraph, and especially power consumption associated with
graphics computations. And thus many of them don’t natively support, or
support only less performing, FPUs. For these reasons the fixed point repre-
sentation is starting again to be widely used.

By considering N digits with fixed point representation it is assumed that
the decimal point position is fixed in a location among the entire sequence.
Thus we have a fixed number k of digits for the integer part of a number and
N − k for the rest of the fraction. To represent also negative numbers, the
5 Natural rational numbers are ratios of integers.
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most significative bit (MSB) of the integer part is used, as shown in Figure
2.8.

Fig. 2.8. Fixed point representation.

The set of different values representing numbers with the fixed point
model, and having N digits, with p digits for the fraction, is {0, 2−p, 2 ∗
2−p, . . . , (2N−1) ∗ 2−p}.

It’s clear that the granularity, that is, the interval between two consecutive
numbers in this representation, is constant and is 2−p.

It is a positional representation and thus the digits on the right of the
decimal point are multiplied by negative exponentials of the base. We now
describe two examples, based on powers of 2 and powers of 10, showing how
the decimal part has weights with negative exponentials:

• (5.75)10 = 5 ∗ 100 + 7 ∗ 10−1 + 5 ∗ 10−2

• (11.011)2 = 1 ∗ 21 + 1 ∗ 20 + 0 ∗ 2−1 + 1 ∗ 2−2 + 1 ∗ 2−3

Let’s represent the number 22.315 in fixed point representation by using 8
bits, 3 of which are used for the fraction. The integer part could be converted
by the successive divisions method; for the fractional part:

• The digits on the right of the decimal point are multiplied by 2.
• The integer part of the result is taken.
• Repeat the two preceding steps until the result is integer by itself.

Using this procedure the computations will be:

• 0.315 ∗ 2 = 0.63
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• 0.63 ∗ 2 = 1.26
• 0.26 ∗ 2 = 0.52
• 0.52 ∗ 2 = 1.04
• 0.04 ∗ 2 = 0.08

Thus we will have 2210 −→ 101102, for the integer part with successive
divisions method; and 0.31510 = 0.01010 . . .2.

Since we could use only three digits as fixed point decimals in this example,
the final result will be 10110.010.

Looking at the above example, it is clear how numbers have an approxi-
mated representation in the fixed point model that is strictly related to the
number of digits used for the fractional part. At least in both the representa-
tion two kind of problems could emerge:

• Overflow : an error in the representation of a number (usually the result of
operations) due to the fact the available number of digits is less than the
ones needed to represent the number.

• Undeflow : the result is too small to be representable, thus is less than the
smallest representable number.

2.3.2 Graphics Hardware Architecture Design

To illustrate the above-mentioned challenges we now describe two examples
of architecture and programming solution to the above challenges.

A hardware architecture used for the triangles rasterization was proposed
by T.A. Moller and J. Strom [29], in 2003. The rasterization process goal
consists of identifying all the pixels stored in the frame buffer that belong to
the geometric primitives. This solution provides a reasonable balance between
visual rendering quality and requirements for system resources. In this new
architecture there are three key innovations:

1. A new scheme for multisampling called FLIPQUAD Multisampling, which
generates only two samples for each pixel and thus is better than the
classical scheme [30].

2. A filter for textures, which implements a new compression algorithm for
reducing texture size.

3. A simple culling 6 scheme, which avoids the need for rendering occluded
surfaces.

Multisampling consists of a technique enabling antialiasing operations to
be performed at full screen resolution. Antialiasing is a technique implemented
6 In computer graphics, back-face culling determines whether a polygon of a graph-

ical object is viewable to a viewing camera. It is a step in the graphical pipeline
to test if the polygon is viewable or not. The process makes rendering objects
quicker and more efficient by reducing the number of polygons for the program
to draw.
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to solve the problem of geometric shape approximation (low quality of images)
caused by the discrete values assumed by pixel matrixes, as shown in Figure
2.9. These are, the square edged ”jaggies” that exist on diagonal lines in
relation to the square pixels that exist on the screen. The answer, termed an-
tialiasing, is used to smudge those jaggies in order to create a smoother edge
for objects. One process used to achieve antialiasing is called multisampling.
The idea is that for each pixel, we sample the pixels around it to determine if
this edge needs to be antialiased. Basically, we discard the jaggies by ”smudg-
ing” the pixel itself.

Fig. 2.9. Anti-aliasing approximations.

There basically exist two main approaches for full-screen antialiasing: su-
persampling and multisampling. Supersampling is based on a brute-force pro-
cedure. This approach samples an image to a higher resolution, usually dou-
bled with respect to the original, and then computes the average of the 2× 2
pixels (each pixel is doubled) and outputs it as the final result. The multi-
sampling technique is less demanding in computational terms; in fact, every
output pixel is made of a set of samples containing information on color depth.
An average value is computed on the sample for each pixel in order to pro-
duce the output image. Both these techniques have to be implemented at the
hardware level to provide acceptable performance and reduce the CPU work
load.

The study produced by T.A. Moller and J. Strom [29] suggests a new mul-
tisampling scheme named FLIPQUAD multisampling, which uses two samples
for each pixel and reorganizes them in patterns to obtain two different shading
levels. The pattern used in this technique is shown in Figure 2.10.

The main advantages in using such pattern are:

• The four pixel samples are localized on x and y coordinates.
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Fig. 2.10. FLIPQUAD pattern.

• The screen irregularity breaks the symmetry and thus increases the quality
of the appearance.

• The sampling cost is only a little higher than that of the other existing
schemes.

The texture compression algorithm has been enhanced, and this has be-
come a starting point for a new texture compression system used on mobile
devices, called PACKMAN [31]. The aim consists of a minimal compression
scheme and a visual rendering quality of acceptable rate.

We will now briefly describe how this algorithm works: the input image
is subdivided into 2 × 4 pixels blocks. Every block is represented by 32 bits.
Only one color is supported for each block, and 12 bits of the 32 are used
for storing red, green, and blue (R, G, B) components. Moreover, a study on
human vision concluded that the human eye is more sensitive to the lighting
than to the chromatic components of colors. The remaining 20 bits have thus
been used for representing the pixel lighting for every block. For each pixel the
base color is modified by a constant taken from a table of four elements. The
same constant is added to the other color components. This approach requires
two bits per pixel in order to specify which of the four values has been chosen.
The remaining four bits are used as indices for the table specifying which
table is used for the entire block. The decompression of each pixel takes place
in the following manner:

• The block basic color is converted from 12 to 24 bits.
• By using the table index an entry in the table is chosen.
• The internal color is computed by modifying the 24 bits with the corre-

sponding entry for the pixel in the table portion.
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The hardware schema for the decompression is relatively simple. It is made
of three 9-bit adders, a multiplexer for the modular components, and a table
lookup capability.

Many hardware manufacturers have started to produce devices supporting
these techniques using embedded chips.

2.3.3 Tile Rendering

A promising technique for data exchange with bandwidth reduction is called
tile-based rendering (TBR). By reducing the data exchange, an important
goal is achieved: power reduction. This technique approaches the problem
of invisible surfaces by heavily modifying the sequence of operations in the
rendering pipeline.

Figure 2.11 presents a classical rendering architecture.
The rendering process phases are as follows:

1. Geometric primitives are computed in any ordering and then a geometric
transformation process takes place.

2. The transformed geometric data to be projected on the screen are then
processed by clipping and rasterization parameter extraction phases.

3. In the rasterization phase a set of per-pixel computations are executed,
such as z-buffer operations and color and lighting interpolations.

4. The invisible surfaces determination is delegated to the z-buffer.

Figure 2.12 presents an architecture based on tile rendering.
The tile rendering process steps are as follows:

1. Geometric primitives are computed in any ordering and then a geometric
transformation process takes place.

2. The data to be projected on the screen are subdivided into tiles (portions)
made of triangles, and for every computed portion the set of triangles
intersecting it is added to a triangle list.

3. After processing all the geometries, we have a triangle list for every tile,
and thus the rendering follows the execution in the list order, tile by tile.

4. For each tile the triangle list is matched against visible surfaces. Different
methodologies could be used for pursuing this process, but in every case,
since the tile is small (usually 32×32), it is possible to maintain in memory
the portion of frame buffer and z-buffer for that tile.

5. After considering the triangle list only the visible triangles are rendered.
Only the visible textures of triangles are loaded from memory.

Let’s now compare the two processes, with attention to the bandwidth
of data traffic. We use the term data front to indicate the data sent by the
CPU or main memory to the graphic processor (geometric data, textures,
and so on). With data back, we mean data transferred between the graphic
processor and its own graphic memory. The study presented in [32] shows
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Fig. 2.11. Classical rendering pipeline.

within a classic architecture the amount of geometric data that is proportional
to the number of used primitive, while in the tile-based architecture every
geometric primitive could be sent to the rasterizer many times. For example,
if a geometric primitive is present in n tiles, it should be transmitted n times to
the rasterizer. Thus in a tile-rendering architecture, the data front component
is strictly related to the number of tiles a primitive intersects, and this factor
could be represented by the average number of tiles covered by a primitive.

While a tile renderer could increase the data front, the other component
(data back) is significantly reduced. Since all data in a fragment7, that belongs
to a tile are memorized in a buffer (in the graphic processor memory), only
the visible pixels (in the final image) should be written in the main memory
buffer. In a traditional renderer many fragments are written anyway in the

7 Every single pixel that has to be processed.
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Fig. 2.12. Tile rendering architecture.

main memory buffer (which is more time-consuming to access), even if some
of them could be occluded by others.

The experiment in [33] describes how the amount of external data traffic
(main memory instead of graphic memory) changes with the tile size (in pix-
els). The result shows that 32 × 32 pixels seems to be a good size for tiles.
If the tile size increases, the traffic is weakly reduced, while if the size is less
than 32 × 32, the traffic strongly increases. Moreover, it has been measured
how much data traffic to the external memory is reduced by using the tile
rendering in comparison to the classic rendering. This second result shows
how the new architecture reduces the external memory data traffic by 1.96
compared to the classic architecture.

Many other studies have been carried out on this technique, such as studies
to efficiently determine when a primitive covers many tiles and which sorting
algorithm works best with this technique [34].
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This technique has been implemented in the PowerVR technology [Pow-
erVR Mobile] by Imagination Technologies. It’s actually a scalable architec-
ture based on tile rendering, and it includes two different specifications for
mobile devices, depending on whether they are set-top boxes, in-car devices,
or PDAs and mobile phones.

2.4 Summary

This chapter presented what we believe are the more challenging and interest-
ing scenarios in applications of three-dimensional mobile device graphics. We
have identified three main areas of application, that many researchers, both
in academia and in industry, are studying: mobile tourist guides, augmented
reality, and mobile gaming. All these fields are challenging, and many steps
are needed to evolve applications for better usability levels. The graphics tech-
nique and libraries we will describe in this book are, or will be, employed in
the mentioned areas. Usability is a main issue for mobile devices, and with
the increase in multimedia applications it becomes a very important topic.
We explored usability among current devices, both describing the unresolved
questions and the existent solutions. We then focused on new algorithms and
architectural scenarios generated by new mobile device graphics capabilities.
We presented recent results on architectural and algorithmic solutions for the
three-dimensional scene rendering on mobile devices. These techniques are
an initial step toward rethinking and optimizing programming code for the
constraints of mobile devices. These architectures and algorithms highlight
new problems in computer graphics that are stimulating the scientific and
industrial community.
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Introduction to Mobile 3D Graphics with
OpenGL r©ES

3.1 Introduction to OpenGL r©ES

OpenGL r©ES is a multiplatform set of API and it’s also royalty-free; it includes
a complete set of functions for 2D and 3D graphics on embedded systems like
mobile devices, vehicles, and appliances. It is a subset of the well-known API
set called OpenGL r© (see Chapter 1), and it operates as an interface between
the low-level software layer and graphics devices.

The main advantages of OpenGL ES are the following:

• Standard and royalty-free. Everyone can use the OpenGL ES specifi-
cation and implement one’s own version of these API. They are supported
by many different hardware and software manufacturers because they are
based on an open multiplatform standard.

• Memory usage and power consumption. ”Embedded” devices (smart
phones, palm tops, etc.) provide a different kind of hardware configuration
from 400 MHz CPU and 64 MB of RAM typical of PDAs to 50 MHz CPU
and 1 MB of RAM supported by mobile phones. OpenGL ES adapts by
using only the memory required by each application, data/instructions,
and throughput. In the very first implementation floating point operations
weren’t supported because of the lack of floating point units (FPUs) in
embedded devices.

• Extensible. OpenGL ES includes an extensible mechanism that helps
manufactures adapt it for newer hardware devices. Moreover, there is an
OpenGL ES standard committee that evaluates and approves extensions
to be included in the standard library.

• User-friendly. Based on standard specifications, the OpenGL ES library
is already structured and developed with an intuitive design, and many
hardware manufacturers are adapting to this new standard.

This chapter presents a set of examples to show 3D concepts readapted
to the embedded environment, and provides source code examples of the API
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implementing these concepts. Appendix A shows how to setup the environ-
ment for supporting the OpenGL ES , which is very diffuse, but all the source
code presented works with other implementations, because OpenGL ES is
standard, except for different procedures for setting up the environments.

To understand the examples provided in this chapter, knowledge of basic
C language is required; we won’t focus on C but rather on OpenGL ES library,
and thus a basic knowledge of the language will help. If the reader has had
experience with OpenGL, it will be very simple to map this knowledge to the
OpenGL ES API.

3.2 The OpenGL r©ES Rendering Pipeline

We now focus on the OpenGL API structure, describing the steps needed
to transform a geometric object into an image rendered on the screen. This
process is called the rendering pipeline. The pipeline structure is used many
times in this book to explain the basic concepts of rendering. All data are
processed, transformed, and combined according to the OpenGL standard
structure. The basic OpenGL instructions are still the same as the desktop
OpenGL; only two elements have been changed:

1. Commands cannot be grouped in a display list to be further executed.
2. The first phase of the pipeline, used for approximating surfaces and geo-

metric curves, has been discarded.

See Chapter 1 for further information on OpenGL and its pipeline.

3.3 3D Mobile Graphic Concepts and Rendering with
OpenGL r©ES

3.3.1 Starting with a Window

A basic library of functions is provided in OpenGL ES for specifying graph-
ics primitives, attributes, geometric transformations, viewing transformations,
and many other operations.

We will show generic code examples for the pipeline phases described
above, and we will discuss how to set up a window for displaying the ren-
dering results.

As we noted in the last section, OpenGL ES is designed to be hardware
independent; therefore, many operations, such as input and output routines,
are not included in the basic library. However, input and output routines and
many additional functions are available in auxiliary libraries that have been
developed for OpenGL programs.

The first step in developing an OpenGL application, and, in general, a
graphic application, consists of setting up a display window.
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For this purpose two basic libraries can be used: The first is called lib-
GLES CM.lib. The second is ug.lib, and is specific for abstracting the creation
of a window and interface environment; this library abstracts from the OS im-
plementation of the windows, thus behaving like the OpenGL utility toolkit
(GLUT ) for the standard OpenGL, and freeing us from supporting a specific
OS. In fact, in addition to the OpenGL ES basic library, there are a number
of associated libraries for handling special operations. The ug.lib provides a
set of functions for interacting with any screen-windowing system. You’ll see
all the details for setting up a OpenGL ES environment in Appendix A.

It’s possible to link these libraries using a specific integrated development
environment (IDE), but we will use a more standard technique using the
Cpragma statement.

To link the library we can use the following syntax:

{#pragma comment( l i b , ”LIBRARY NAME” )}

In all graphics programs, we will need to include the header file for the
OpenGL ES core library. For most applications we will also need the ug.lib for
the visual interaction. For example, using the ug.lib for abstracting interfaces
from the OS, we only need to include the file GLES/gl.h, as it includes the
GLES/egl.h and all the needed OpenGL ES functions.

To create a graphic display context using OpenGL ES API, one must set
up a display window on one’s video screen. That is the rectangular area of the
screen in which pictures will be displayed. We can’t create the display window
directly with the basic OpenGL functions, since this library contains only
device-independent graphics functions, and window-management operations
depend on the computer we are using A.1.

Fig. 3.1. A 250 by 250 display window at position (100,100) relative to the top-left
corner of the video display.
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The OpenGL paradigm displays graphic objects on the screen using
frames. In fact, the performance is measured in frames per second (FPS).
For each single frame it is necessary to develop what will be presented on
the screen. The display function is executed for each frame; thus all graphics
code will typically be inserted in this function. It requires an input parameter,
which represents the displayed window.

The main routine should include an init function for initializing the graphic
engine and returning an handle pointer for the graphic context.

The next step requires creating a window using a create window function.
As already discussed for the display function, a window is used to store the
handle of an OpenGL ES window. Typical function parameters are a graphic
context handle, and a string with window title, height, width, and top left
corner of the window.

At this stage we need to send to the OpenGL window the frame to be
displayed. We can do this by using the display function, which takes as input
a window and a display handle.

To prevent the program from immediately stopping, we need a loop func-
tion. This is what we actually call the main loop. This loop continues to
iterate, managing the program messages and/or events. We can call a main
loop function only with a parameter, a window handle.

The following generic steps create a simple window with OpenGL ES API.
You’ll find a detailed description in Appendix A.

int main ( ) {

GC gc = int ( ) ; // c r e a t e a graph i c s context

// c r e a t e a window

Window win = CreateWindow ( gc , ” He l lo ” , 1 0 0 , 1 0 0 , 0 , 0 ) ;

Display (win ) ; // d i sp l ay func t i on

MainLoop ( gc ) ;

return 0 ;

}

Running this program does nothing, and that’s why we haven’t yet speci-
fied what geometric primitives to display on the window. We will now describe
how to introduce basic interactions in OpenGL ES applications.
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3.3.2 Basic Interaction

Many programs require inputting data from the keyboard or the mouse; thus
we need a way to associate an action with a keyboard event.

The first step in managing keyboard inputs is to define a function that has
some parameter input. We will define a basic one accepting four parameters:

1. The current window.
2. The key pressed, usually stored in an integer variable.
3. The x coordinate of the mouse pointer in the window when they key has

been pressed.
4. The x coordinate of the mouse pointer in the window when they key has

been pressed.

Then we will check which key has been pressed. This is usually imple-
mented by a switch statement that associates the actions with the corre-
sponding pressed key, for instance, ”r”, for the rotate action of fixed degrees,
or ”q” for quitting the application.

At this stage there should be a defined link from the keyboard input func-
tion to the main window in order to manage the keyboard events in that
specific window.

3.3.3 Geometric Primitives and Per-Vertex Operations

OpenGL ES includes a set of basic geometric primitives for representing geo-
metric shapes in rendering process: points, lines, triangles, and so on. Every
primitive is characterized by a type and the number of vertices that can be
minimized by using certain specific primitives like (strip and fan),as shown in
Figure 3.2.

For a triangle strip, for instance, one must specify three vertices for the
first triangle; then only one vertex for each subsequent triangle is required.
For each vertex, it is necessary to compute the position with respect to view-
points, using geometric transformations, and considering the characteristics of
displayed window. Note that only a matrix (as you’ll see in the next examples)
expresses the coordinate transformations from the model space to the point of
view of the user; this matrix is usually called the model-view matrix. Initially
the model-view matrix is an identity matrix, but then it is continuously mul-
tiplied by the transformation matrices (rotations, scaling, . . . ). Thus every
transformation like rotations or scaling is related to the state of the model-
view matrix.

We will present some code fragments for different models of views and basic
geometric primitives that are rendered as per-vertices operations, in order to
show how graphics objects are mapped in the rendering pipeline.

There are basically two graphic projections supported by OpenGL ES :
orthographic and perspective. If you ever looked down a very long road, you
probably noticed that the road seems to be smaller (in width) depending on
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Fig. 3.2. An example of triangle strips.

the distance from you (the user point of view). This is called a perspective
view. In the orthographic view, the road remains the same size independent
of the distance of the viewpoints. We will describe how to display a shape on
the screen using an orthographic view. This is only an example, to show you
how geometric primitives work and to show the per-vertex operations done
in the rendering pipeline (we will develop example code abstracted from the
hardware that implements the rendering pipeline).

The orthographic view is less computationally expensive than is perspec-
tive, and thus could be preferred to the perspective view, especially on mobile
devices. In fact often there is no need for perspective, as in 2D applications
or video games. In all those cases the orthographic view is very useful (Figure
3.3).

Geometric primitive shapes, like squares or triangles, are implemented by
specifying the vertices of their geometric shape. Vertices are points in a three-
dimensional space, and thus are made of three coordinates: x, y, and z. After
specifying the vertices, one must specify the type of geometric primitive as
shown in the following table:

OpenGL ES provides the glPointSize to change points size and the
glLineWidth for lines size. it is usually assumed that a line segment is one
pixel thick.

For example, if we decide to display a square shape, we need to specify
coordinates for vertices of the square. Usually this is done by three float
values representing the x, y, and z coordinates of a vertex. The x stands for
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Fig. 3.3. Orthographic parallel projections.

Geometric primitive type Output

GL POINTS A point for each vertex
GL LINES A line for every couple of vertices
GL LINE STRIP Given the first vertex, a line joining all the vertices

in the given sequence is displayed
GL LINE LOOP The same as GL LINE STRIP, but the last vertex is

conjoined to the first one
GL TRIANGLES For every three vertices a triangle is displayed
GL TRIANGLE STRIP After the first two vertices, every successive

vertex uses the previous two vertices to draw a triangle
GL TRIANGLE FAN After the first two vertices, every successive vertex uses

the preceding and the first vertex to draw a triangle;
it is used for conic shapes

Table 3.1. Geometric primitives.

the horizontal position, the y is vertical, and z stands for depth. The greater
the z value, the more the vertex will be shown close to the user viewpoint,
while if z is negative, the vertex will be displayed far from the viewpoint. The
square will be represented by showing two adjacent triangles. The first three
vertices could be used to draw the first triangle, while the last is used for the
final triangle. We can store all data into an array, as shown in the following
box:
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GLfloat square [ ] = {

x {1 t1 } , y {1 t1 } , z {1 t1 } ,
x {2 t1 } , y {2 t1 } , z {2 t1 } ,
x {3 t1 } , y {3 t1 } , z {3 t1 } ,
x {1 t2 } , y {1 t2 } , z {1 t3 } ,

} ;

(xit1, yit1, zit1 is a vertex) of the first triangle and (x1t2, y1t2, z1t2) is a
vertex of the second triangle.

The graphic window is initialized by declaring its background with the
function glClearColor. This function takes four parameters as input, with
values between 0 and 1. These parameters identify a single color in red, green,
blue, and alpha transparency (RGBA) color space. The first three values rep-
resent, respectively, red, green, and, blue, while the fourth stands for the alpha
channel, i.e., the transparency.

As already described, we usually need to introduce an initialization func-
tion; following a sketch code of the init function, it is presented and com-
mented on.

void i n i t {}{
g lC l ea rCo lo r ( r , g , b , a ) ;
glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty ( ) ;
g lOrtho f ( l e f t , r i g h t , bottom , top , near , f a r ) ;
g lVer texPo inte r ( 3 , GL FLOAT, s t r i d e , square ) ;
g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;
}

Many kinds of matrices can be used working with the OpenGL ES API.
They usually define the projections or geometric primitives to be used; trans-
formations are managed by the GL MODELVIEW matrix, whereas projec-
tions are managed by the GL PROJECTION. The current matrix can be
changed by using the function glMatrixMode; which takes as input a pro-
jection matrix.

We then initialize this matrix with the identity matrix, the values of which
are set to 1; we use it to clear the matrix.

To compute the orthogonal projection views, we use the glOrthof func-
tion. It requires six parameters (Figure 3.4):
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• GLfloat left and GLfloat right: values for clipping (intersecting) planes
on the left and right.

• Glfloat bottom and GLfloat top: values for clipping (intersecting) planes
on top and bottom.

• GLfloat near and GLfloat far: values for planes containing the scene;
geometric primitives closer than near or more distant than far won’t be
displayed.

Fig. 3.4. A visual example of the six parameters.

The parameters described above span the area to be visualized on the
window.

After setting up the orthographic view matrix we consider the functions
needed to draw the square. Geometric primitives in OpenGL ES are displayed
by Vertex Arrays. To use those arrays, we select vertices, and this is done by
the glVertexPointer function. This function takes as input four parameters:

• GLint size: specifies the number of coordinates per vertex. Since each
vertex has been defined by using three values, this parameter is usually
set to 3.

• GLenum type: represents the array data, e.g., GL BYTE (bytes), GL SHORT
(integers), GL FLOAT (floating), etc.

• GLsizei stride: specifies the offset between consecutive vertices, i.e., how
many values there are between the end of one vertex and the start of the
next. In our example this value is set to 0.
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• const GLvoid *pointer: defines a memory address of the first element of
the array, i.e., the array pointer.

Like the vertex array, there are many other specialized arrays included in
the OpenGL ES library; if they aren’t used by our code, we can disable them
thus recovering resources for the rest of the code. By default all these arrays
are disabled and thus if we need to use them, we have to enable them. This
can be done by the glEnableClientState function, which takes arrays as the
input parameter. In our example it is the GL VERTEX ARRAY.

After setting up the selected projection (orthographic) and the geometric
shape (a square made of two triangles), we can display it.

The following sketch of code shows a typical display function:

void d i sp l ay (win ) {
ClearScreen ( win ) ;
glDrawArrays (mode , f i r s t , count ) ;
g lF lush ( ) ;
SwapBuffers (win ) ;
}

To draw the geometric primitives using the current array, we use the gl-
DrawArrays function, which takes the following parameters as input:

• GLEnum mode: defines which type of primitive to display, in our case
GL TRIANGLE STRIP.

• GLint first: specifies the first index of the array, and thus how many
vertices skip before starting to read array values, since we want to start
from the first it will be set to 0.

• GLsizei count: defines how many vertices to read; in our case four (re-
member the square is defined by two triangles specified by a triangle strip
with four vertices: three for the first triangle and one for the second).

We send data to the screen by flushing and swapping. The final displayed
image will look like Figure 3.5.

We will now describe another example related to per-vertex operations:
how to apply transformations to geometric primitives.

OpenGL ES provides three basic primitive transformations:

1. Scaling
2. Translation
3. Rotation

Scaling allows the geometric primitives to increase or decrease in size with-
out changing their proportions.

Translation moves a geometric primitive along the three axes of the 3D
space.
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Fig. 3.5. An orthogonal view of a square made by two triangles stripped together.

Rotation turns a geometric primitive with respect to the three axes.
To show a rotation (as an example of transformation) we will sketch the

code of a rotated triangle. We will then introduce an array containing a tri-
angle vertex as already seen in the previous example.

GLfloat t r i a n g l e [ ] = {

x {1} , y {1} , z {1} ,
x {2} , y {2} , z {2} ,
x {3} , y {3} , z {3} ,

} ;

We now define a color array. Colors are specified by groups of four coor-
dinates in RGBA color space as in the example above.

GLfloat c o l o r s [ ] = {

r {1} , g {1} , b {1} , a {1}
r {2} , g {2} , b {2} , a {2}
r {3} , g {3} , b {3} , a {3}

} ;

In the initialization function we simply set the background color.
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void i n i t ( ) {

g lC l ea rCo lo r ( r , g , b , a ) ;

}

The display function code will look like this:

void d i sp l ay ( ) {
ClearScreen ( c o l o r ) ;
glShadeModel (GL SMOOTH) ;
g lVer texPo inte r ( 3 , GL FLOAT, s t r i d e , t r i a n g l e ) ;
g lCo lo rPo in t e r ( 4 , GL FLOAT, s t r i d e , c o l o r s ) ;
g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY,

GL COLOR ARRAY) ;
glPushMatrix ( ) ;
g lTran s l a t e ( x , y , 0 ) ;
g l S c a l e ( 0 . 5 , 0 . 5 , 0 . 5 ) ;
g lRotate ( ro t . degree , x , y , z ) ;
glDrawArrays (GL TRIANGLES , f i r s t , count ) ;
glPopMatrix ( ) ;
g lF lush ( ) ;
SwapBuffers (win ) ;
}

The code draws a triangle including a smooth color. There are two kinds of
shading models implemented by the glShadeModel function: GL FLAT and
GL SMOOTH. By default it is set to GL SMOOTH. GL FLAT sets a single
color for the shape to be represented (Figure 3.6). GL SMOOTH enables the
so-called smooth shading; that is, vertices and primitive colors are computed
by interpolating single values of the vertex’ colors (Figure 3.7).

Transformations are executed by glTranslatef, glScalef, and glRotatef.
The f at the end of each function name indicates that the functions accept only
floating point (real) parameters as input. Usually an x indicates a GLfixed
type for input parameters, while v is used for arrays (vectors).

After drawing the triangle, we don’t want other shapes to be influenced
by the next transformations, since that will change geometric coordinates.
The glPushMatrix and glPopMatrix functions are used for storing the
current status of the coordinate reference system in a stack. We will insert
our transformation code between these two functions so that the model-view
matrix will be reset to its original status (reference system) after the code
segment.
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Fig. 3.6. The triangle with flat shading.

Fig. 3.7. The triangle with smooth shading.
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We then apply all three transformations. Each transformation will change
the model-view matrix, thus influencing subsequent transformations. Recall-
ing that geometric transformations are carried out by matrix multiplication,
the product in matrix algebra changes with the order of the factors. In our
example, we translate, rotate, and scale the shape.

glTranslate takes three parameters as input, thus indicating how to move
along the three axes. Our first transformation consists of moving the triangle
only by x, y coordinates.

A scaling function takes three values for each vertex and multiplies them
for its input parameters. If the shape was placed in the bottom left of the
window, the operation will have scaled the object but the origin will remain
centered in the bottom left corner.

We reduce our triangular shape by half with the glScale function.
Finally, rotation takes place. The first parameter specifies a rotation angle.

The other three are used for indicating with respect to which axes the object
is rotated.

We draw the triangle with glDrawArrays. Then, we restore the original
reference system by taking out from the stack the original matrix, using the
glPopMatrix.

3.3.4 Lighting

In the OpenGL ES lighting model for each primitive vertex, the correspond-
ing color is computed considering the attributes of the selected material and
lights. The vertex lighting information requires defining the geometric nor-
mals in order to manage object reflections for the selected vertex. OpenGL
ES separates lighting effects in three RGB coordinates; every lighting source
is characterized by a quantity of red, green, and blue (expressed within 0 and
1) light it emits, and every material is defined by the percentage of reflected
color. Moreover, for each color there are four lighting types, as described in
Chapter 1 [11].

There are three light colors for each light - ambient, diffuse, and specular
(set with glLight) - and four for each surface (set with glMaterial). All OpenGL
implementations embed at least eight light sources, and glMaterial can be
changed for each polygon.

The definitive polygon color is the sum of all four light components, each
of which is shaped by multiplying glMaterial color by glLight color (changed
by the directionality in the case of diffuse and specular). Whereas there is no
emission, color for glLight is added to the final color without changing it.

For example, the diffuse lighting component changes the color of a vertex
in RGB by computing:

[max(L∗n , 0 ) ] ∗ (MR { d i f f }∗LR { d i f f } , MG { d i f f }∗LG { d i f f } ,
MB { d i f f }∗LB { d i f f } ) ,
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where L ∗ n is the scalar product between the unitary vector L from the
vertex to the lighting source and the unitary normal n of the vertex. All these
parameters are combined together in an equation for resolving the color to be
stored in the frame buffer for future per-fragment operations.

The OpenGL ES lighting model is an estimate of lighting physics, and it
doesn’t, for instance, include second-order reflections or shadows mixing (the
shadow of an object crosses the shadow of another), but this is not our goal,
since the OpenGL ES goal is to be capable of executing real-time rendering
even with limited resources.

Before starting to provide a code example for managing lighting, let’s recall
the geometric normal concept given in Mathematics, which be valuable for the
OpenGL ES lighting model [35].

To display light we must compute normal vectors for each polygon in an
object.

A normal of a polygon is a perpendicular vector connecting to the polygons
surface, and it is very useful for frequent implementations of 3D computer
graphics when considering surface direction mechanics.

Since all models in a 3D scene will be made out of polygons, it is convenient
to have a function that calculates the normal vector of a polygon. A normal
vector of a polygon is the dot product of two vectors located on the surface
plane of the polygon (in our case that polygon is a triangle). And what we need
to do is take any two vectors located on the polygon’s plane and calculate their
dot product. The dot product is the resulting normal vector. The OpenGL
ES library provides a glNormal3f function for defining normals.

We will sketch the code for supporting two kinds of lighting, by defining
two color arrays - one for ambient light and another for diffuse light.

f loat l i ghtambient [ ] = { r {a } , b {a } , g {a } , a {a } } ;

f loat l i g h t d i f f u s e [ ] = { r {d } , b {d } , g {d } , a {d } } ;

An array for specifying material properties is also needed - one for am-
bient and another for the diffuse light. Basically we multiply lighting values
by material values to obtain a final reflected color. Each value represents a
quantity used for reflecting a particular color.

f loat mater ia lambient [ ] = { r {ma} , b {ma} , g {ma} ,
a {ma} } ;

f loat ma t e r i a l d i f f u s e [ ] = { r {md} , b {md} , g {md} ,
a {md} } ;

We sketch the code for the init function as follows:
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void i n i t ( ) {

glEnable (GL LIGHTING) ;

g lEnable (GL LIGHTx ) ;

g lMat e r i a l (GL FRONT, GL AMBIENT, mater ia lambient ) ;

g lMat e r i a l (GL FRONT, GL DIFFUSE , ma t e r i a l d i f f u s e ) ;

g lL i gh t (GL LIGHTx , GL AMBIENT, l i ghtambient ) ;

g lL i gh t (GL LIGHTx , GL DIFFUSE , l i g h t d i f f u s e ) ;

g lC l ea rCo lo r ( r , g , b , a ) ;

g lVer texPo inte r ( 3 , GL FLOAT, s t r i d e , t r i a n g l e ) ;

g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;

glShadeModel (GL SMOOTH) ;

}

We activate lighting by using the GL LIGHTING parameter as input to
the glEnable function.

OpenGL ES allows the use of eight different lights at the same time. To
enable one of these lights, a GL LIGHTx parameter has to be passed to the
glEnable function as input, with x = 0 . . . 7.

To define material properties we use glMaterialfv and glMaterialf func-
tions. glMaterialfv is used for multiple valued parameters, while the gl-
Materialf is used when there is a single parameter, as shown later in this
example.

The first parameter defines which polygon face needs to be updated
by lighting information. In OpenGL ES API, GL FRONT AND BACK flag
is available. The second parameter is used to specify the type of lighting
attributes and it can be GL AMBIENT, GL DIFFUSE, GL SPECULAR,
GL EMISSION, or GL AMBIENT AND DIFFUSE.

The last parameter is an array or single value depending on the selected
function (glMaterialfv or glMaterialf).

Lighting properties have to be set, and this is done by using glLightfv and
glLightf functions, which work in the same manner as the material functions.

A sketch code for the display function includes the computation of normals
for managing lights.
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void d i sp l ay (win ) {
ClearScreen ( c o l o r ) ;
g lLoadIdent i ty ( ) ;

//FRONT AND BACK
glCo lo r ( r , g , b , a ) ;
glNormal ( 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , f i r s t { f r on t } ,
count { f r on t } ) ;
glNormal ( 0 . 0 f , 0 . 0 f , −1 .0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , f i r s t {back } ,
count {back } ) ;

//LEFT AND RIGHT
glCo lo r ( r , g , b , a ) ;
glNormal (−1.0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays }(GL TRIANGLE STRIP , f i r s t { l e f t } ,
count { l e f t } ) ;
glNormal } ( 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , f i r s t { r i g h t } ,
count { r i g h t } ) ;

//TOP AND BOTTOM
glCo lo r ( r , g , b , a ) ;
glNormal ( 0 . 0 f , 1 . 0 f , 0 . 0 f ) ;
glDrawArrays }(GL TRIANGLE STRIP , f i r s t { top } ,
count { top } ) ;
glNormal ( 0 . 0 f , −1 .0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGL STRIP , f i r s t {bottom } ,
count {bottom } ) ;
g lF lush ( ) ;
SwapBuffers (win ) ;

}

Normals must be perpendicular to surfaces. Thus the surface in front of the
light must have a (0,0,1) normal vector, while the back surface has (0,0,-1).
The vector length is one; thus both are normalized vectors.

Normals are defined by the glNormal3F function applied before drawing
the related primitive, and this function takes as input three parameters that
identify a normalized vector.

The same thing is done for the bottom and side surfaces. Like the color
and vertex arrays, there is also a normal array. It could be initialized as a
glNormalPointer function, which works like the glVertexPointer.
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To enable this array, a GL NORMAL ARRAY flag must be passed to
glEnableClientState.

Figure 3.8 shows the visual feedback of lighting with color features.

Fig. 3.8. A scene with the color shading enabled.

In the first sketch of code we enrich our scene by including lighting. But the
lights didn’t have a particular direction. We will see now how to use directional
lights; this will allow us to manage diffuse and specular illumination.

First let’s create arrays for setting light properties, and add a specular
array for managing specular effect.

f loat l i ghtambient [ ] = { r {a } , b {a } , g {a } , a {a } } ;

f loat l i g h t d i f f u s e [ ] = { r {d } , b {d } , g {d } , a {d } } ;

f loat l i g h t s p e c u l a r [ ] = { r { s } , b { s } , g { s } , a { s } } ;
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We then create a specular array for materials. We set it so that the material
will reflect all the light that hits it.

f loat mater ia lambient [ ] = { 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f } ;

f loat ma t e r i a l d i f f u s e [ ] = { 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f } ;

f loat mate r i a l s p e cu l a r [ ] = { 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f } ;

Since we selected a directional light, we must set light position and direc-
tion. We create two arrays for specifying these two properties.

f loat l i g h t p o s i t i o n [ ] = { x {p } , y {p } , z {p } } ;

f loat l i g h t d i r e c t i o n [ ] = { x {d } , y {d } , z {d } } ;

We now sketch the init function:

void i n i t ( ) {
glEnable (GL LIGHTING) ;

g lEnable (GL LIGHTx ) ;

g lMat e r i a l (GL FRONT AND BACK, GL AMBIENT,
mater ia lambient ) ;

g lMat e r i a l }(GL FRONT AND BACK, GL DIFFUSE ,
ma t e r i a l d i f f u s e ) ;

g lMat e r i a l }(GL FRONT AND BACK, GL SPECULAR,
mat e r i a l s p e cu l a r ) ;

g lMat e r i a l }(GL FRONT AND BACK, GL SHININESS ,
s h i n i n e s s ) ;

g lL i gh t (GL LIGHT0 , GL AMBIENT,
l i ghtambient ) ;

g lL i gh t (GL LIGHT0 , GL DIFFUSE ,
l i g h t d i f f u s e ) ;
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g lL i gh t (GL LIGHT0 , GL SPECULAR,
l i g h t s p e c u l a r ) ;

g lL i gh t f v (GL LIGHT0 , GL POSITION , l
i g h t p o s i t i o n ) ;

g lL i gh t f v (GL LIGHT0 , GL SPOT DIRECTION,
l i g h t d i r e c t i o n ) ;

g l L i g h t f (GL LIGHTx , GL SPOT CUTOFF , ang le ) ;

g l L i g h t f }(GL LIGHTx , GL SPOT EXPONENT, exponent ) ;

g lC l ea rCo lo r ( r , g , b , a ) ;

glShadeModel (GL SMOOTH) ;
}

We enable lighting and the first light; then we set the material properties
and specular values.

We then set a new material property by using the glMaterial function.
The shininess value for the material is usually in the [0, 128] range. This value
specifies how much a specular light will be polarized. The greater the value,
the more the light will be polarized.

The next step consists of setting the light properties. To set the position
and direction of the lights; the GL POSITION and GL SPOT DIRECTION
flags must be set and passed as input to glLightfv function.

Another useful flag is GL SPOT CUTOFF. It specifies a light cone size.
We can imagine an effect that is like an electric torch cone pointing to a wall.
For instance, a value of 180 will spread light in every direction.

The GL SPOT EXPONENT is used to specify how polarized a light will
be. For example, we could think about a torch that concentrates its light when
turned toward a direction. As for GL SHININESS flag, this value can be in
the range of 0 to 128.

Finally, there are three more flags that could be used:

• GL CONSTANT ATTENUATION
• GL LINEAR ATTENUATION
• GL QUADRATIC ATTENUATION

They can be used to manage light reduction which is the measure of how
much the light intensity is reduced by moving far from the light source. Think-
ing of the torch example, the effect is light reduction when moving far from
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the torch itself. Setting these properties could end in decreasing software per-
formance since they require many computations and thus we won’t use them
in our example.

We create a sphere by using the SolidSphere function. We use h hori-
zontal and v vertical slices for lighting effects.

The sketch of code for the display function follows:

void d i sp l ay (win ) {

ClearScreen ( c o l o r ) ;

g lLoadIdent i ty ( ) ;

So l idSphere ( s i z e , h , v ) ;

g lF lush ( ) ;

SwapBuffers (win ) ;
}

The final scene rendering will display a sphere with a specular reflection
(Figure 3.9).

Fig. 3.9. A sphere with a specular reflection.

3.3.5 Per-Pixel Operations and Texture Mapping

Data can be input in the form of pixels rather than vertices. In fact, for pixel
operations, pixel data are either:
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• Stored as texture memory, for use in the rasterization stage.
• Rasterized, with resulting fragments merged into a frame buffer as if they

were generated from geometric data.

Color information contained in pixels is converted into appropriate format
to be assigned to processed vertices. For example, if pixels are taken from an
image stored at 24 bits of color depth and the display is capable of visualizing
only 216 colors, then an 8-bit-per-channel transformation takes place with the
5 − 6 − 5 bits scheme, respectively, for red, green, and blue components (16
bits all in RGB5 format).

Strings of bits, called texels, are then stored in texture memory and pro-
cessed frame by frame. As we will see in next examples, textures need to be
sampled at least one time per frame in order to be usable; this process has a
relevant impact on data bus bandwidth. One possible solution to this prob-
lem consists of compressing textures in memory and then decompressing them
when required. Using this process less memory, disk space and bandwidth are
required, obtaining a fast rendering procedure; otherwise more textures could
be stored in the same memory space, or higher resolution textures could be
saved in memory.

Texels are specified by two coordinates in a bidimensional texture image
(which is created with height and width lengths that are exponentials of base
2). By mapping these coordinates in 3D space, it is possible to detect which
texels have to be used for coloring geometric primitive pixels on the screen.
Moreover, textures are managed according to the right perspective of geo-
metric primitives. They need to be matched against the object’s dimension in
pixels; a matching operation is called magnification if texels are less than the
destination dimension in pixels, and it is called minification otherwise.

We describe now how to introduce texture mapping on geometric polygons.
The first phase consists of loading textures from an external file. Texture sup-
ported file formats are mainly bmp, jpg, gif, and png, but also other formats
are supported. We will focus on the bmp file format, or bit map, since it’s
quite simple to write code for loading a bit-map formatted image.

Once a texture has been loaded from memory, it doesn’t matter in what
format it was originally stored. It will be saved in memory. Note that OpenGL
ES works with images of sizes like 64 × 64, 128 × 128, and so on; they’re all
in the form of 2n ∗ 2n.

This section covers the basics of texture mapping in OpenGL ES API.
This includes uploading textures in memory and the application of texture
onto geometry. We do not cover the actual loading of the texture data itself.
That will be shown in detail in Appendix A.

We have some raw RGB image data in an array and we want to load it
for our geometry in OpenGL ES API. The first thing we have to do before
OpenGL ES can use this raw texture data is upload it to the video memory.
Once a texture is to uploaded to the video memory, it can be used throughout
the time in which our application is running. Before a texture can be uploaded
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to the video memory, there is some setup that must take place. Below we show
a sketch for functions calls needed for uploading and drawing textures. Note
that these function calls should be used once per texture [36].

The first thing to do in the process of uploading textures is calling the
glBindTexture function. glBindTexture specifies which texture ”ID” will
be used to point at the texture. A texture ”ID” is defined as a number that
could be used in order to access our textures. Following we show a snippet of
code for glBindTexture function.

void i n i t ( ) {
glEnable (GL TEXTURE 2D) ; }

void l o ad t ex tu r e ( ) {
glBindTexture ( . . . , id ) ;
g l P i x e l S t o r e i ( . . . ) ;
g lTexParameteri } ( . . . ) ;
glTexEnvf } ( . . . ) ;
glTexImage2D (GL TEXTURE 2D , 0 , GL RGB, width , he ight ,
0 , GL RGB, GL UNSIGNED BYTE , data ) ;
}

void drawtexture ( ) {
glBindTexture } ( . . . , id ) ;
g lBeg in ( . . . ) ;
g lVertex } ( . . . ) ;
glTexCoord } ( . . . ) ;
glEnd ( . . . ) ;

}

This call will set textures that have the identifier id as the active texture.
Any other call that has to manage texture mapping will affect this texture.

The glPixelStorei function specifies how data need to be uploaded. For
instance, if the parameter is 1, the function specifies that the pixel data are
aligned in byte order, that is, the data have one byte for each component -
one for red, green, and blue.

glTexParameteri sets parameters for the current texture.
The glTexEnvf function specifies environment variables for the current

texture. It denotes how texture will behave when it is rendered into a scene. It
sets active textures by a modulate attribute. The modulate attribute enables
us to apply effects such as lighting and coloring to textures.

The glTexImage2D function will upload textures to video memory, mak-
ing them available for use in our programs. We will describe parameters for
this function:
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• target : the target of this function, GL TEXTURE 2D in our case.
• level : the detail level as a number, which could be 0 for this snippet.
• internal format : internal components parameter. This parameter indicates

how many color components to memorize from the uploaded texture. There
are symbolic constant values for this parameter, but generally GL RGB is
used.

• width and height : the width and height of a bit-map image. These must be
integers equal to 2n+2 for some integer n. The textures width and height
must be a power of two.

• border : image borders, which must be 0 or 1. The value 0 specifies not to
use image borders.

• format : the pixel format that will be uploaded. There are many constants
that can be used, but again GL RGB is the value that is mostly used.

• type: type of data to be uploaded. Usually GL UNSIGNED BYTE is used.
• pixels: pointer to image data. This is the image structure that will be

loaded to video memory.

We uploaded our texture and we want to use these data in video memory,
for example to draw textures on top of three-dimensional shapes on the screen.
The process for applying a texture to geometric shapes depends on data types
that we have to manage. We thus have to deal with texture coordinates and
types, as can be seen in the draw-texture function snippet of code (Figure
3.10).

First we need to be sure that texturing is enabled. We can do this by the
glEnable (GL TEXTURE 2D) function. We then specify a texture coordinate
for each vertex that is part of a face. As shown in the draw-texture function, a
pattern for texture mapping is like the following: TexCoord, and VertexCoord
(Figure 3.11).

3.3.6 Per-Fragment Operations

Per-fragment operations are mainly devoted to enhancing the graphic ap-
pearance of 3D applications, but they also are involved in object depth tests.
In fact, by using the z-buffer algorithm, these operations can determine if a
surface is visible or not (occluded by others). One typical example of these
operations is the blending phase, which facilitates representing transparen-
cies by mixing objects and background colors, by means of a special kind of
equation involving many variable parameters.

Another important effect managed by per-fragment operations is antialias-
ing, which smooths object contours. When a scene may give rise to moir pat-
terns (when the original image is finely textured) or jagged outlines (when the
original has sharp contrasting edges, e.g., screen fonts), antialiasing techniques
are used to reduce such artifacts [37] [38].

The fogging effect is also managed at this operational level of the pipeline
and makes objects that are further from the camera progressively more ob-
scured by haze. This technique works because of light scattering, which causes
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Fig. 3.10. The image above shows the OpenGL texture coordinate system. In the
code above, the calls to glTexCoord2f are very important as to what the end result of
the texture mapping will be. When we make a call to glTexCoord2f (x,y), OpenGL
places texture coordinates at that place on the image. If we are texturing a triangle,
there will be three texture coordinates on the image. Once a glEnd is reached, the
triangle that is formed by the texture coordinates is then mapped onto the triangle
that is made up from the vertices.

more distant objects to appear hazier to the eye, especially in outdoor envi-
ronments. The fragment colors are interpolated by the following equation:

• C = f × Cp + (1 − f × Cf )

where C is the computed color, Cp is the starting color, f is a density
coefficient, and Cf if the fog color. If f is linearly dependent on the distance,
the perception of distance effect is simulated.

We now treat a simple case of blending with a snippet of code to show
an example of a per-fragment operation. Blending occurs after the scene has
been rasterized and converted to fragment, but before the final computed
pixels are drawn in the frame buffer. With blending, we can control how
much object color values can be combined with new fragment values for using
alpha blending to create a translucent fragment.

Enable blending is made by glEnable(GL BLEND) function, while setting
up different blending modes involves glBlendFunc(source, destination) func-
tion, with two parameters as the source and destination.
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Fig. 3.11. Texture mapping.

The tables below show the parameter values that could be set with blend-
ing functions.

Constant Blend Factors

ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)

DST COLOR Rd, Gd, Bd, Ad

ONE MINUS DST COLOR (1, 1, 1, 1) − (Rd, Gd, Bd, Ad)
SRC ALPHA As, As, As, As

ONE MINUS SRC ALPHA (1, 1, 1, 1) − (As, As, As, As)
DST ALPHA Ad, Ad, Ad, Ad

ONE MINUS DST ALPHA (1, 1, 1, 1) − (Ad, Ad, Ad, Ad)
SRC ALPHA SATURATE (f, f, f, 1), f = min(As, 1 − Ad)

Table 3.2. Values controlling the source blending function and the source blending
values they compute [39].
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Constant Blend Factors

ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)

SRC COLOR Rs, Gs, Bs, As

ONE MINUS SRC COLOR (1, 1, 1, 1) − (Rs, Gs, Bs, As)
SRC ALPHA As, As, As, As

ONE MINUS SRC ALPHA (1, 1, 1, 1) − (As, As, As, As)
DST ALPHA Ad, Ad, Ad, Ad

ONE MINUS DST ALPHA (1, 1, 1, 1) − (Ad, Ad, Ad, Ad)

Table 3.3. Values controlling the destination blending function and the destination
blending values they compute [39]

We consider blending operations by taking RGB components of a fragment
as representing its color, and the alpha component as representing transparen-
cies. For example, if we are viewing an object through red glasses, the color
we see is a component of red from the glasses and a component of the object
color. The percentage of mixing varies according to the transmission prop-
erties of the glasses. If glasses transmits 65 percent of the light (that is, 35
percent opaque), the color we see is a combination of 35 percent of the glass
color and 65 percent of the color of objects we are looking at. We consider
that situations including multiple translucent surfaces can also happen. If we
look at one street from a driver’s point of view and the car has the windshield
between it and the viewpoint, and we are wearing sunglasses, objects behind
the car are visible through two pieces of glass.

A typical example is in the snippet of code sketched below.

int DrawScene ( ) {
ClearScreen ( c o l o r ) ;
g lLoadIdent i ty ( ) ; // Reset the Current

// Model−view Matrix
glEnable (GL BLEND) ; // Enable Blending
glBindTexture ( . . . , id1 ) ;
g lBeg in ( . . . ) ;
g lVertex ( . . . ) ;
glTexCoord ( . . . ) ;
glEnd ( . . . ) ;

g lEnable (GL BLEND) ; // Enable Blending
glBindTexture ( . . . , id2 ) ;
g lBeg in ( . . . ) ;
g lVertex ( . . . ) ;
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glTexCoord ( . . . ) ;
glEnd ( . . . ) ;
// we need at l e a s t two t ex tu r e s to blend
// Set the Blending to 50 percent modal ity
glBlendFunc (GL ONE, GL ONE) ;
g lD i s ab l e (GL BLEND) ; // Disab le Blending

return 0 ;
}

3.4 OpenGL r©ES Future Developments and Extensions.

Recent developments in graphics hardware have replaced fixed modules of ren-
dering pipeline with programmable modules. The so-called shading language
has already been introduced in standard OpenGL, and it allow developers
to program and change some phases of the graphics pipeline. The developer
provides single, independently compiling software units called shaders, while
there is a main program that links together the individual modules. There are
two languages involving vertex or fragment depending on the corresponding
pipeline phase. A vertex processor is a pipeline module that is in charge of
vertex values and geometric operations, as already seen. Operations executed
by this module (which at the hardware level usually include also the per-pixel
operations) are:

• Vertex transformations
• Normals computation and transformations
• Texture coordinates generation
• Texture coordinates transformations
• Lighting
• Color on materials

Software units written for this module are called the vertex shader.
The fragment processor is a programmable module that operates on frag-

ments and corresponding values. Operations supported by this module are:

• Interpolation and blending
• Texture loading and applying
• Fogging
• Linear operations on colors
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Software units written for this module are called the fragment shader.
The very first version of OpenGL ES 1.0 has been based on OpenGL 1.3,

but removing some data types and adding smaller data types and fixed point
math.

We now describe some of the OpenGL ES extensions. If the reader is
already familiar with OpenGL can see the changes; otherwise it is a short list
of differences to start with after learning the standard OpenGL:

• OES byte coordinates: allows and supports byte arrays for vertices and
textures.

• OES fixed point: for each function having a float as a parameter there
is another accepting a fixed point input and its name ends with an x, for
instance, glClearColorx.

• OES single precision: since the double data type is not supported, this
extension replaces every function having double type parameters with new
ones, for example, glFrustum.

• OES read format: enables developers to specify the input format for
the glReadPixels operation. Before, the only possible input format was
GL RGBA or GL UNSIGNED BYTE.

• OES compressed paletted texture: supports the use of textures made
of 16 or 255 color palettes in five different formats (24-bit RGB, 32-bit
RGBA, RGB565, RGB5551, RGB4444), and can be used by the glCom-
pressedTextImage2D command.

• OES query matrix: allows applications to read the current values of
matrices in the stack.

Moreover, new extensions are coming out for enhancing visual rendering
and performances, like the support for the vertex buffer object (VBO). Vertex
buffer objects support is crucial for rendering objects based on vertex arrays.
The idea behind VBOs is to provide regions of memory (buffers) accessible
through identifiers. A buffer is made active through binding, following the
same pattern as other OpenGL entities such as display lists or textures.

VBOs provide control over mappings and unmappings of buffer objects and
define the usage type of the buffers. This allows graphics drivers to optimize
internal memory management and choose the best type of memory, such as
cached/uncached system memory or graphics memory in which to store the
buffers.

Binding operations convert each pointer in client-state functions into off-
sets relative to current bound buffers. As a result, bind operation turns a
client-state function into a server-state function. The scope of data used by
client-state functions is only accessible by OpenGL client, and other OpenGL
clients are not able to access that client data. Because the VBO mechanism
changes client-state functions into server-state functions, it is now possible to
share VBOs data among various clients. As a result, OpenGL clients are able
to bind common buffers in the same way as textures or display lists.

A sketch of code for supporting VBOs is shown below.
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//some data
GLfloat data [ ] = {

x {1} , y {1} , z {1} ,
x {2} , y {2} , z {2} ,
x {3} , y {3} , z {3} ,

} ;

GLuint bu f f e r o b j ;
// the c l a s s i c gen and bind used from OpenGL
// c r e a t e s and s e l e c t s the bu f f e r ob j e c t
g lGenBuf fers (1 , & bu f f e r o b j ) ;

g lB indBuf f e r (GL ARRAY BUFFER, bu f f e r o b j ) ;
// s t o r e data in to bu f f e r ob j e c t , which i s in
// graphic memory when av a i l a b l e

g lBuf fe rData (GL ARRAY BUFFER, s izeof ( data ) ,
data , GL STATIC DRAW) ;

// s e l e c t ver tex bu f f e r ob j e c t
g lB indBuf f e r (G ARRAY BUFFER, bu f f e r o b j ) ;
// use i t l i k e a normal ver tex array and draw as t r i a n g l e
g lVer texPo inte r ( 3 , GL FLOAT , 0 , 0 ) ;

glDrawArrays }(GL TRIANGLES , 0 , 3 ) ;

Finally, OpenGL ES also includes a specification of a common platform
interface layer, called EGL. This layer is platform independent and may op-
tionally be included as part of a vendor’s OpenGL ES distribution. The plat-
form binding also has an associated conformance test. Alternatively, a vendor
may choose to define its own platform-specific embedding layer.

3.5 Summary

In this chapter we explored the OpenGL ES library, describing the rendering
pipeline associated with it. We then introduced many of computer graph-
ics’ basic concepts, such as: windows and mouse interaction and geometric
primitives. We described all the concepts involved in the rendering pipeline
by giving examples with OpenGL ES API. We provided snippets of code for
geometric primitives and per-vertex operations, lighting managing, per-pixel
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operations and texture mapping, and finally per-fragment operations. We de-
fined concepts and then provided sketch code for their implementation within
the OpenGL ES library; for complete working code examples, refer to Ap-
pendix A. We concluded our OpenGL ES description by describing future
developments, like vertex shaders, which are a powerful extension to OpenGL
ES API. We provided also a pseudo-code for the shaders in order to show users
their abilities to change the rendering pipeline, thus revealing a powerful tool
for optimization.
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JavaTMMobile 3D Graphics

4.1 M3G

This section introduces the Mobile 3D Graphics API, M3G also known as
JSR-1841 [40].

Even if a 3D Graphics API for Java already exists (JAVA3D), most mobile
devices have limited memory and processor power; thus Java 3D is unsuitable
for them. Therefore, a proposal for a more suitable API was put together by a
group of experts. The need was for a scalable, small-footprint, interactive 3D
API for mobile devices that could work as an optional package for J2METMto
allow 3D graphics. Java Platform, Micro Edition or Java ME (formerly re-
ferred to as Java 2 Platform, Micro Edition or J2ME), is a collection of Java
API for the development of software for resource constrained-devices such as
PDAs, cell phones, and other consumer appliances. M3G is a software pack-
age for providing 3D graphic functionalities to a wide range of devices(Figure
4.1).

M3G is designed to be a 3D API suitable for the J2ME platform and
CLDC [41]/MIDP [42].

Since it uses floats, it cannot be implemented on top of CLDC 1.0 but
must be implemented on at least version 1.1 of CLDC. The Connected Limited
Device Configuration (CLDC) is a specification of a framework for Java ME
applications targeted at devices with very limited resources such as pagers
and mobile phones. It could possibly be implemented on MIDP2 1.0, but
most devices supporting M3G will likely also support MIDP 2.0 [37]. It is
integrated with components of MIDP to allow efficient rendering to its Image
and Canvas classes.

1 JavaTMSpecification Requests (JSRs) are formal documents that describe pro-
posed specifications and technologies to be added to the Java platform.

2 Mobile Information Device Profile (MIDP) is a specification published for the use
of Java on embedded devices.
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Fig. 4.1. Mobile 3D Graphics architecture.

We consider, now, the question about a need for a new mobile 3D Graphics
standard when OpenGL ES is already available.

OpenGL ES is a low-level API standard, since it’s based upon OpenGL;
in fact, even for building simple 3D scenes it requires developing many lines of
code, while there’s a need for having a compact version of the final application.
M3G is a high-level library designed to be compatible with OpenGL ES API.
It is not a competitor, but it’s more a complement to the OpenGL ES API
set. This design choice has many advantages:

• Enhances developer’s productivity.
• Minimizes code size of graphics applications.
• Increases applications’ performance.

JSR-184 must not be mixed up with Java 3D standard API, which ex-
tends 3D capabilities to standard Java applications. Java 3D was designed
for desktop computers and its completely unsuited for M3G. Many solutions
and technicalities used in Java 3D has been modified and reused in JSR-184,
as for example the support for a scene graph, which is used for representing
in a compact and hierarchical structure all the elements that are part of a
3D scene. The scene graph represents a tree structure and includes definitions
of each kind of physical or abstract object in the 3D world (cameras, lights,
animations, etc.). The root of this scene tree is in fact represented by a World
node object.
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Moreover, JSR-184 specifications describe a new standard file format
(.m3g), used for including all data related to a specific scene (the scene graph)
and loading these data in applications coded to support the M3G standard. In
this way, the scene data, including animations, can be created by using com-
mon 3D modeling programs (Maya, 3D Studio, . . . ) available on the market.
These models can then be saved in M3G format and imported in a M3G ap-
plication program that, by using few lines of code, can visualize and animate
the imported scene. The product life cycle is thus tremendously accelerated by
a clear separation between graphics design and code development of applica-
tions. In fact, graphic artists can create their own look and feel for the scene,
including animations, and then export them as an M3G file to application
developers.

4.2 MIDP Applications

The applications supporting the M3G standard are MIDP applications, and
they are also known as MIDlets. The MIDP specification defines the minimum
hardware, software, and network requirements for an application to run on a
certain kind of device. MIDP applications are co-resident with other appli-
cations and executed in the Mobile Information Device (MID) framework, as
shown in Figure 4.2.

Fig. 4.2. MIDP architecture.
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We describe now some basic concepts useful for designing and implement-
ing a MIDP application. A life cycle of a MIDlet application is shown in Figure
4.3.

Fig. 4.3. MIDlet life cycle.

Application Management Software (AMS) is an environment where a MI-
Dlet is installed, executed, stopped, and uninstalled. AMS creates every new
instance of a MIDlet and manages its status during the execution process.
A generic MIDlet can be in one of the following statuses: Paused, Active,
Destroyed. When created and initialized, it is in the Paused status; if there
is an exception raised by MIDlet constructor, it goes into Destroyed status.
MIDlet goes into the Active status when a call of the startAPP() method is
completed.

Figure 4.3 shows the statuses of a MIDlet and the functions that manage
transitions from one status to another.

The user interface in MIDP applications is built by using two API func-
tions. The first API, which is a low-level function, is extended from the ab-
stract class Canvas, and the second, which is a high-level function, uses Alert,
Form, List, and TextBox classes, extended from a Screen abstract class as
shown in Figure 4.4.

High-level API classes are designed to provide portability among software
components on different MIDs. The Canvas class allows applications to have
direct control over the user interface but delegates to programmers porta-
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Fig. 4.4. High-level MIDP classes.

bility implementation among MIDs interfaces (display size, supported colors
number, different kinds of keyboards, etc.).

Usually, one or more MIDlets are packed in a JAR file called a MIDlet
suite, which is then used by AMS. MIDlets included in the same suite share the
same execution environment (virtual machine) and thus can interact among
one another. Every MIDlet suite can be associated with an application de-
scriptor used for describing its content. The descriptor file extension should
be .jad. It is used for managing MIDlets and storing application configuration
properties. These properties can be modified in a JAD file without chang-
ing the associated JAR. MIDP specification provides detailed information on
building and developing application descriptors and their attributes.

In the latest versions of MIDP standard, there are some interesting new
features:

• HTTP secure protocol support (HTTPS)
• Enhanced network management
• Support for application distribution
• New graphical user interface (GUI) components
• Gaming support
• Multimedia functions support (audio and animations)
• A security model (trusted MIDlets)

The main enhancement is a package entirely dedicated to gaming develop-
ment for J2ME framework, called javax.microedition.lcdui.game. It includes
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several classes that enable game developing for mobile devices [43]. In partic-
ular, a GameCanvas class can be used in conjunction with an M3G standard
on devices supporting MIDP version 2.0.

4.3 Immediate and Retained Mode

The main class for drawing a scene with M3G standard is the Graphics3D
class. It is defined as a singleton 3 and a unique instance can be accessed via
the getInstance() method. To draw a scene, it is necessary to link a Graphics3D
instance to a target object, draw the scene by an appropriate method, and
release the target, as shown in the following snippet of code.

Graphics 3D g3g = Graphics3d . g e t In s tance ( ) ;
World = world ; . . .
Graphics g = . . .
boolean bound = fa l se ;
try {

g3d . bindTarget ( g ) ;
bound = true ;
g3d . render ( world ) ;

}
f ina l ly {

i f ( bound ) g3d . r e l e a s eTarg e t ( ) ;
}

A target object is a common Graphics object, the same as used in the
paint() method with a Canvas or a GameCanvas class.

Graphics3D can also draw on top of an Image2D object. In this way a
developer can draw a three-dimensional scene and use it as texture. Note that
target objects must be released after using them; otherwise a unique instance
of Graphics3D cannot be linked to other objects, and buffers cannot be sent
to the screen for visualization.

Graphics3D supports two different drawing modalities:

1. Immediate mode
• This is a low-level modality that allows defining each detail of a draw-

ing process.
• It draws an individual node, a group of nodes, or a submesh in a scene

graph.
• Cameras, lights, and background are managed separately.

2. Retained mode
3 A one-time instantiated class with a unique point of access.
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• This mode hides low-level details by loading and visualizing three-
dimensional scenes by means of a few lines of code.

• It directly draws the World object, at the root of a scene graph.
• It manages cameras, lights, and background by accessing them directly

with a World object.

The retained mode allows developers to use already-made, complex, three
dimensional models; for instance, a developer can easily manage a scene graph
in order to build a car model. Nodes representing wheels can rotate around
their axes and are constrained to be parallel with respect to the car body
orientation. All this information can be used by specifying it during modeling
as additional information to nodes. The retained mode simplifies 3D world
design by hiding low-level technical details from developers.

The overall control of a 3D scene can be obtained only by using low-level
functions, and by accessing the graphics pipeline, and thus, for this reason,
JSR-184 supports also the immediate mode, where drawing functions could
be invoked on single objects. Moreover, the retained mode can take advantage
of graphics acceleration because it is built on low-level immediate mode func-
tions. Both modalities can be used in conjunction with each other, allowing
developers to balance drawing performance with resources by choosing the
appropriate modality with respect to their target.

4.4 Scene Graph

The retained mode uses a scene graph for linking all geometric objects in a
three-dimensional world made of a tree structure. Each node of the graph
represents a geometric object and contains information on appearance, 4 po-
sitioning in space, and function with respect to other nodes.

To build a 3D world, objects are used as subclasses of the Node base class.
Then the Group class contains many objects, and the World class is a special
case of the group class that includes all nodes in a scene. A World node is root
of the scene graph and it is different from a regular node, in that all specified
transformations are ignored during scene rendering.

A 3D world can be created from scratch, and new nodes can be linked after
that, but a more convenient procedure is storing a scene in an .m3g file and
then loading that scene to manage it in a scene graph. A complete and basic
scene graph includes at least a World object and a Camera object. Figure 4.5
shows a generic scene graph describing different node characteristics.

It also possible to share components among different nodes of a scene
graph, thus reducing memory usage. There are, anyway, some exceptions:

• Nodes can belong only to one group.
• Cycles among nodes are not allowed.

4 It includes all geometric information concerning the node.
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Fig. 4.5. A scene graph example.

To uniquely identify and address an object within a scene graph, a field of
Object3D class is used, the userID. Each node in a tree holds its own userID,
while World object has 0 by default; all other objects can have arbitrary
values. It is important to observe that userID values are not unique within a
tree, and so different nodes could have the same userID.

To build a scene graph from an .m3g file, the Loader class is invoked;
it manages object extraction from files and builds all necessary classes. It
creates all animation controllers, and it initializes the tree structure and all
group of nodes, lights, and cameras. All these functionalities are included in a
single load() method. More specifically, all classes stored in the .m3g file are
deserialized in a vector containing Object3D objects returned as the result of
a method call.

For example, in order to use a first element of an M3G file called test.m3g,
as an instance of a World class, we need to write the following code:
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Object3D [ ] o = null ;

try {
o = Loader . load ( ” t e s t .m3g” ) ;

}

catch ( Exception e ) {}

World loaderWorld = (World ) o [ 0 ] ;

This class can also load many types of image formats, such as PNG, and
in this case the result of the load method would be an Image2D object.

4.5 Transformations

The abstract class Transformable defines all geometric transformations that
can be applied on nodes. There are four types of transformations:

• Translations (T)
• Rotations (R)
• Nonuniform scale (S).
• Generic nonhomogeneous matrix 4 × 4 (M)

Given a point in the space p = (x, y, z, w), representing a vertex coordinate
or a texture coordinate, its transformation can be defined (with respect to a
coordinate system) as follows:

p
′
= TRSM × p

A Transformable class defines methods for setting these components, also
individually, as for example with the methods setTranslation() or setScale().

4.6 Nodes of the Scene Graph

The node class is an abstract class representing all kinds of nodes included in
a scene graph, such as: lights, cameras, meshes, sprites, and groups. A node
defines a local coordinate system that can be transformed with respect to its
ancestor coordinates system. Nodes can also be lined up with other nodes or
point to a reference node; in this way we can force, for instance, a light or a
camera node to point to a fixed object.

Another interesting characteristic of a node is the ScopeID parameter.
This field is used for setting the visibility levels of a node, and in general is
used for computing the visibility of a set of objects. Many different kinds of
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masks can be defined for the visibility of parts of a scene and to modify the
scope of the camera in order to match the parts of a scene that are visible. If
the scope of a camera and the nodes do not match, the nodes aren’t drawn
on the screen, thus saving resources especially at the computational level.

Moreover, this parameter can be used for speeding up computations on
lighting. Usually, in a three-dimensional environment, the lights have a cer-
tain radius, determined by the type of light and its intensity. By setting dif-
ferent scopes for lights and objects corresponding to their distances, it can be
computed if a light has effects on that object or not. This allows the use of
many different light sources in the same scene without affecting the speed of
performances and saving computational resources.

A set of nodes can be grouped together by using a Group class. Grouping
different objects can help in the case of managing different objects with the
same kind of operations. A typical group example is a car model with four
wheels. In fact, by defining a car as a group of nodes, it is possible to move
the whole car without moving each wheel individually.

4.7 Camera Class

A camera class is represented by a node in a scene graph, which sets the
position of observers in the scene and the projection of a 3D perspective on a
two-dimensional display.

The camera is generally pointing toward negative values of the z axis. It
can be positioned and oriented in the same way as other nodes, namely by
using transformations available at each node. It uses classical projections and
clipping rules that apply for OpenGL, with the exception of the user-defined
clipping planes, which are not supported. It is, instead, possible to define
many cameras, and thus it is posssible to have many different viewpoints.

4.8 Managing Illumination

The JSR-184 specification supports four kinds of lights, each having different
computational complexity and thus performance. The equations used for light
computation are directly imported from the OpenGL standard ones. Light
types are:

• Ambient light: defines the general intensity of objects in a scene. Ambient
lights illuminate a scene with the same illumination quantity; thus position
and direction are ignored during computations.

• Directional light: defines only the source direction of light. Position or
distance from an object has no effect on the latter, even if it can be set
anywhere in the scene.
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• Omni light: defines a light source point. The omni lights affect objects in
each direction. A curve can be set to adjust the intensity variable according
to the distance from objects.

• Spot light: defines the position, direction, and radius of a light cone. This
light doesn’t have any effect on objects out of its light cone.

The computations needed to manage a light require a considerable amount
of CPU time. It is thus crucial to choose the right kind of light related to
the scope of a scene and to avoid putting lights on every object by using
a scope node and thus saving computational performance. Every light has a
color determined by the RGB components and has an intensity value, but the
exact effect of light hitting a surface is also function of that surface’s material.

4.9 Meshes and Sprites

A mesh object is a node in a scene graph that represents a three-dimensional3D
object specified by a set of polygons. The object itself is made of several sub-
meshes, each having its own appearance, as shown in Figure 4.6.

Fig. 4.6. A mesh object structure.

A submesh is an array of triangle strips defined by an IndexBuffer object.
Triangle strips are made by indexing vertex coordinates and other attributes
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of a VertexBuffer associated with an IndexBuffer. VertexBuffer contains in-
formation about vertex positions, normals, and texture coordinates. Each sub-
mesh in a mesh shares the same VertexBuffer.

The components of an appearance object are:

• Material, which defines the colors to be used in lighting computations.
• CompositingMode, which allows per-pixel composition attributes such as

transparencies and z-buffer.
• PolygonMode, which contains attributes at the polygonal level including

settings for face visibility (back and front) and perspective corrections.
• Fog, which contains all attributes for setting a fog effect.
• Texture2D, which incorporates all 2D images and attributes for specifying

how an image can match the related submeshes.

The mesh class also includes two subclasses used for managing dynamic
meshes, which can change their shapes according to certain parameters: Mor-
phingMesh and SkinnedMesh.

An object of MorphingMesh type is equivalent to an ordinary mesh, except
that its vertices are drawn and computed as a weighted linear combination.
It is a combination of a VertexBuffer and VertexBuffers, which are targets of
the morphing operation. All target VertexBuffers, also called morph targets,
include the same properties: the same number of vertices for each array, the
same number of components per vertices, and the same component size.

By denoting a base mesh by B, morph targets by Ti, and weights for each
morph target by wi, a resulting mesh can be represented by the following
equation:

R = B +
∑

i wi(Ti − B)

Morphing can be computed on every vertex attribute:

• Vertex positions
• Colors
• Normals
• Texture coordinates

The SkinnedMesh class represents a skeleton animated polygonal mesh.
In contrast with a normal mesh class, it includes a skeleton structure. The
skeleton is built by means of a hierarchical structure, by using scene graph
nodes. Each node belonging to a skeleton represents a bone, which is a trans-
formation. Each vertex can be linked to one or more skeleton bones. In this
way a mesh is extended and linked to a structure that can manage it.
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Fig. 4.7. A Sprite3D object structure.

The Sprite3D class represents a 2D image with a position in three-
dimensional space. The structure of a Sprite3D object is shown in Figure
4.7.

Images are stored in Image2D objects. Their appearance contains at-
tributes for fog and composite effects. There are two modalities for appear-
ance:

• Scaled mode, in which the width and height of a sprite on the screen are
computed, as it is a rectangle with one unit thick and based on the XY
plane centered in its local coordinate system origin.

• Unscaled mode, in which the width and height of a sprite are measured in
pixels and are equal to a rectangle defined by setting its size.

4.10 Animations

Each object extended from a basic Object3D class can be animated. The most
relevant classes for managing animations are:

• KeyFrameSequence
• AnimationController
• AnimationTrack

KeyFrameSequence contains all animation data as a time sequence of val-
ues called keyframes. A keyframe represents a value of an attribute at a certain
instant of time. It contains a vector of components, specified by its construc-
tor, which has the same size for each keyframe in a sequence. Since keyframe
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values can be distant in time, interpolation functions are provided to manage
them.

A KeyFrameSequence object can be associated with different animation
targets by using an AnimationTrack class. It associates a KeyFrameSequence
with an AnimationController object and a property that can be animated.
This kind of property consists of a scalar value or a variable vector that can
be updated by an animation system. An example of a property that can be
animated is the orientation of a node. Animated properties are identified by
a symbolic constant, and sometimes they’re related only to a restricted class
of values, like the SHINESS property of a Material object.

Classes derived from Object3D include one or more animated properties.
An Object3D with animated properties is called an animated object. Each
animated property of an animated object is an animation target. Each ani-
mated object can include references to zero or more AnimationTracks, which
are activated by their related AnimationControllers.

An AnimationController manages the position and speed of an animation
sequence. An animation sequence can be defined as a set of AnimationTracks
managed by a single AnimationController. Each AnimationTrack contains all
the data needed to manage an animated property on an animated object. By
using an AnimationController, operations like pausing, stopping, playing, and
speeding-up an animation sequence are available.

Figure 4.8 shows the classes related to the animation process.

Fig. 4.8. Classes related to the animation process.
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4.11 Ray Intersections

The RayIntersection class represents an infinite line starting from an origin
(in a coordinate reference system) and pointing in a fixed direction. It is used
for storing references to all Mesh or Sprite3D objects intersected by this line.
Not only intersections but also distances between this line and intersected
objects are stored. The RayIntersection object is created at run time and
cannot be loaded by the Loader() class. It is used in conjunction with the
pick() method of a Group class. This method returns information on this first
object in a group intersected by the line passed as a parameter to this method.
Information on intersected objects is then returned by the RayIntersection
object. This class is used to manage collisions among objects or to simulate,
for example, a gun-shot hitting a target placed at a fixed distance.

4.12 Building an M3G Demo

In this section we explore how to use some high-level classes provided by M3G
API to create a simple demo program with a car model moving on the screen
and avoiding obstacles by a collision detection method.

First we need to install a Sun Java Wireless Toolkit, and create a new
project by using a Ktoolbar interface. This will help in understanding appli-
cations of the described concepts and classes.
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Fig. 4.9. A snapshot of a wireless toolkit interface.

After defining both the project and MIDlet name, we need to choose a
CLDC 1.1 configuration, which supports float data type, and choose Mobile
3D Graphics for J2ME (jsr 184) as additional API.

Recall that Figure 4.3 showed the life cycle of a MIDlet and methods used
for changing MIDlet status, which will be used below.

The example of source code for a MIDlet includes not only a declaration
of these methods, but also some functions for timing animations.

import javax . m i c roed i t i on . mid let . ∗ ;

import javax . m i c roed i t i on . l c du i . ∗ ;

import java . u t i l . ∗ ;

import java . i o . ∗ ;

public class CarDemo extends MIDlet {
private stat ic f ina l int PERIOD = 50 ; // in ms
private Timer t imer ;
private CarDemoCanvas canvas = null ;
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private Display d i sp l ay ;

public void pauseApp ( ) {}

public void destroyApp (boolean b){}

public Display getDisp lay ( )
{

return d i sp l ay ;
}

public void startApp ( ) {

// check whether m3g i s supported or not
S t r ing ve r s i on =
System . getProperty ( ” mic roed i t i on .m3g . v e r s i on ” ) ;
i f ( v e r s i on == null ) {

f inishGame ( ) ;
}

else {
d i sp l ay = Display . getDi sp lay ( this ) ;

canvas = new CarDemoCanvas ( this ) ;
t imer = new Timer ( ) ;

d i sp l ay . setCurrent ( canvas ) ;
t imer . s chedu le ( new AnimTimer ( ) , 0 ,PERIOD) ;

}
}
public void f inishGame ( ) {

t imer . cance l ( ) ; // stop the t imer
not i fyDes t royed ( ) ;

}

Inside the StartApp() method a microedition version property is checked
to indicate if the device supports additional m3g API. In case of a positive
answer, the CarDemoCanvas class is initialized as the core class of our demo
application.

In the same source code must be inserted a class called Animtimer that
is used for managing animations. This class contains a run method, which is
in charge of updating animations. To set the timing for animations, a Timer
class has been used.
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// Class f o r managing t iming
class AnimTimer extends TimerTask
{

public void run ( )
{ i f ( canvas != null )

canvas . update ( ) ;
}

}

4.12.1 DemoCarCanvas Class

The DemoCarCanvas class extends the Canvas class and implements a Com-
mandListener for managing the code to be executed in response to the EXIT
and BACK events generated by the device user’s interface.

The following snippet of code is a class constructor.

public CarDemoCanvas (CarDemo carDemo){

this . carDemo = carDemo ;

exitCmd = new Command( ”Exit ” ,Command.EXIT , 0 ) ;
addCommand( exitCmd ) ;
setCommandListener ( this ) ;

g3d = Graphics3D . ge t In s tance ( ) ;

width=getWidth ( ) ;
he ight=getHeight ( ) ;

scene = new World ( ) ;

c r ea teScene ( ) ;

// s t a r t the animation
nextTimeToAnimate = scene . animate ( appTime ) ;

}
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First a reference to the MIDlet CarDemo is stored, and then the EXIT
command is set to allow users to close the application by pressing a device
key.

After the Graphics3D object is instantiated, it represents a 3D graphics
context and provides a method for scene drawing, called render.

The device screen height and width are set, and after the scene object
is created (the type of this object is World), it will contain all the three-
dimensional scene objects (lights, cameras, and meshes).

Finally the createScene method is invoked for creating and setting all
objects included in the scene.

private void c rea teScene ( ) {
createCar ( ) ;
createCamera ( ) ;
c r ea t eL i gh t ( ) ;
createBackground ( ) ;
c r e a t eF l oo r ( ) ;
createCone ( ) ;

}

In CreateScene, many methods are called, one for each object included in
the three-dimensional scene.

In the scene we include:

• One camera (normCamera)
• Two lights (light and light2)
• One background (background)
• Three meshes for visualizing a car, some cones (alias the obstacles), and a

floor

To load the mesh models in a three-dimensional scene, a technique has been
developed by Andrew Davison [44] which converts a wavefront OBJ model into
a Java class containing M3G code. We thus generated three different classes,
Car, Floor, and Cone, including all visualization code for these three models.

A createCamera class sets up a simple camera, and we will use some trans-
formations on this camera (mainly two 90-degree rotations with respect to the
x and y axis) for visualizing the scene from the right perspective. To have a
better perspective, there is also a setOrientation method, which slides the
scene down a little bit.

Finally a camera is added to the scene object and set as active.

private void createCamera ( ) {

f loat aspectRat io = ( f loat ) width / ( f loat ) he ight ;
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// normCamera
normCamera = new Camera ( ) ;
normCamera . s e tPe r sp e c t i v e ( 6 0 . f , a spectRat io , 1 . 0 f ,
100000. f ) ;

// camera t rans f o rmat i ons
Transform normCameraTransform = new Transform ( ) ;
normCameraTransform . postRotate ( 9 0 , 1 f , 0 f , 0 f ) ;
normCameraTransform . postRotate ( 9 0 , 0 f , 1 f , 0 f ) ;

normCameraTransform . pos tTrans la te (0 f , 0 f , 2 0 0 . 0 f ) ;
normCamera . setTransform ( normCameraTransform ) ;

// ang l e s downward s l i g h t l y
normCamera . s e tOr i en t a t i on (−50.0 f , 0 f , 1 f , 0 f ) ;

scene . addChild (normCamera ) ;
scene . setActiveCamera (normCamera ) ;

}

Code that manages the lights also sets and uses the methods and properties
of M3G API as shown below.

private void c r ea t eL i gh t ( ) {

// 1 omni l i g h t ( ahead )
Light l i g h t = new Light ( ) ;
l i g h t . s e tCo lo r (0 x f f f f f f ) ;

l i g h t . s e t I n t e n s i t y ( 1 . 0 f ) ;
l i g h t . setMode ( Light .OMNI) ;
l i g h t . s e tTran s l a t i on ( 0 , 0 , 1 0 0 ) ;

/ / 1 omni l i g h t ( behind )
Light l i g h t 2 = new Light ( ) ;
l i g h t . setMode ( Light .OMNI) ;
l i g h t 2 . s e t I n t e n s i t y ( 1 . 0 f ) ;
l i g h t 2 . s e tTran s l a t i on ( 1 0 0 , 1 0 0 , 1 0 0 ) ;

scene . addChild ( l i g h t ) ;
scene . addChild ( l i g h t 2 ) ;

}

Very similar to the method above is the createBackground method coded
as follows:
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private void createBackground ( ) {

Background background = new Background ( ) ;

background . s e tCo lo r (0 x004080C0 ) ;

scene . setBackground ( background ) ;
}

This method creates a background object, setting it to a light blue color.
The color format is managed by M3G as 0xAARRGGBB, where:

• A stands for the alpha channel
• R stands for the red channel
• G stands for the green channel
• B stands for the blue channel

The remaining methods, createCar, createCone, and createFloor, use their
respective classes: Cone, Floor, and Car.

private void c r ea t eF l oo r ( ) {

Image2D f loo r Im = loadImage ( ”/ piano . png” ) ;
Plane plane = new Plane ( f l oo r Im , 1 0 0 0 , 1 0 0 0 ) ;
scene . addChild ( plane . getPlaneMesh ( ) ) ;

}

private void createCone ( ) {

Cone cone = new Cone ( ) ;
Cone cone1 = new Cone ( ) ;
cone . getMesh ( ) . s e tTran s l a t i on (100 , 130 , 30 f ) ;
cone1 . getMesh ( ) . s e tTran s l a t i on (−150,−100,30 f ) ;
scene . addChild ( cone . getMesh ( ) ) ;
scene . addChild ( cone1 . getMesh ( ) ) ;

}

The createFloor and createCone classes, respectively, build a plane and
two cones (obstacles), similar to street cones positioned in the scene.

The Plane class creates a 2D plane, and its constructor takes three pa-
rameters as input:
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• An Image2D object for managing textures
• An integer representing x axis elongation
• An integer representing y axis elongation

All images are loaded by the loadImage method, which performs some
consistency checks before returning an Image2D object as result.

private Image2D loadImage ( S t r ing fn ) {
Image2D im = null ;
try

{
im = ( Image2D) Loader . load ( fn ) [ 0 ] ;

}
catch ( Exception e )
{

System . out . p r i n t l n ( ”Cannot make image from ” + fn ) ; }
return im ;

}

The createCar method does not contain a Car class constructor, since
a car object is created during the initialization phase; it contains instead
methods for managing collisions among car and other objects (street cones)
in the scene:

• The setScene method takes a World object pointer to use it with the Car
class.

• The setPickingEnable method enables/disables a car mesh during collision
computations.

private void createCar ( ) {

// Disab le c o l l i s i o n de t e c t i on f o r car mesh
car . getMesh ( ) . s e tP ick ingEnable ( fa l se ) ;

car . s e tScene ( scene ) ;

carGroup = car . getCarGroup ( ) ;

scene . addChild ( carGroup ) ;
}

The update method is invoked for updating the car position on the screen
after checking for collisions by using the updateCar method of Car class. Once
a car is positioned, the screen is repainted by the repaint method.
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public void update ( ) {
appTime++;
i f ( appTime >= nextTimeToAnimate ) {

nextTimeToAnimate = scene . animate ( appTime )
+ appTime ;
System . out . p r i n t l n ( ”nextTimeToAnimate : ”
+ nextTimeToAnimate ) ;

}

car . updateCar ( ) ;

posCar = car . g e tPo s i t i on ( ) ;
normCamera . s e tTran s l a t i on ( posCar [ 0 ] , posCar [ 1 ] ,

posCar [ 2 ] ) ;

r epa in t ( ) ;
}

The paint method is in charge of drawing the final three-dimensional scene.
As already mentioned, the only method provided by the M3G standard for
drawing is the render method; it can be called after linking a graphics context
to a canvas.

We also display on the screen the car speed (top left side of the screen).

protected void paint ( Graphics g ) {
g3d . bindTarget ( g ) ;

g3d . render ( scene ) ;

g3d . r e l e a s eTarg e t ( ) ;

g . drawString ( ”Speed : ” + car . getSpeed ( ) , 5 , 5 ,
Graphics .TOP| Graphics .LEFT) ;

}

The last two methods of the CarDemoCanvas class are used for managing
the keyboard.

protected void keyPressed ( int keyCode ) {
int gameAction = getGameAction ( keyCode ) ;

car . pressedKey ( gameAction ) ;
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}

protected void keyReleased ( int keyCode ) {
int gameAction = getGameAction ( keyCode ) ;

car . re leasedKey ( gameAction ) ;
}

Both methods check which key has been pressed, store it in a gameAction
variable, and pass it to Car class methods for updating the car position.

4.12.2 Car Class

Car class not only contains code for visualizing a car model (i.e., Floor and
Clone classes) but also has methods for animating cars, and manages (by
means of the RayIntersect class) a basic collision detection algorithm.

The car class constructor takes an Image2D parameter for textures. It also
is in charge of building a car model and managing a group of transformations
(trans) for positioning a car in the scene. The model is then linked to a group;
in this way if we modify a transformation each of the children nodes is affected
by this change.

public Car ( Image2D img ) {
this . s cene=scene ;

model = makeModel ( img ) ;

transGroup = new Group ( ) ;
t rans . pos tTrans la te (X POS , Y POS , Z POS ) ;
transGroup . setTransform ( t rans ) ;
transGroup . addChild ( model ) ;

}

The storePosition method extracts the current car position from the trans-
formations group.

private void s t o r ePo s i t i o n ( )
// ex t r a c t the cur rent ( x , y , z ) p o s i t i o n from transGroup
{

transGroup . getCompositeTransform ( t rans ) ;

t rans . get ( transMat ) ;
xCoord = transMat [ 3 ] ;
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yCoord = transMat [ 7 ] ;
zCoord = transMat [ 1 1 ] ;

}

The transMat object represents a 4 × 4 float matrix:

private f loat [ ] transMat = new float [ 1 6 ] ;

The methods used for managing position and direction of the car are:

• updateMove, which takes a transformation parameter (trans), performs
all checks for collision detection, and moves the car according to a space
attribute computed by the current speed of the car.

• updateRotation, which by means of key pressed (left and right arrow keys)
rotates the car (using a Transform object called rotTrans).

Both these methods are invoked by the updateCar method, which manages
the following:

• Increasing speed until the up arrow key is released, and decreasing speed
when holding down the arrow key (or releasing both keys)

• Executing the updateMove method
• Executing the updateRotation method only if the left or right arrow keys

are pressed

public void updateCar ( ) {

i f ( upPressed ) {
i f ( speed<MAX SPEED) speed+=2f ;

}

i f ( downPressed ) {
i f ( speed >0.0 f ) speed−=4f ;
i f ( speed <0.0 f ) speed =0.0 f ;

}

i f ( ! upPressed && ! downPressed ) {
i f ( speed >0.0 f ) speed−=2f ;
i f ( speed <0.0 f ) speed =0.0 f ;

}

updateMove ( ) ;

i f ( l e f tP r e s s e d | | r i gh tPre s s ed )
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updateRotation ( ) ;
else i f ( ! l e f tP r e s s e d && ! r i gh tPre s s ed )

ang le =2.0 f ;
}

All necessary attributes for managing key pressing (Boolean) are updated
by the pressedKey and releasedKey methods:

public void pressedKey ( int gameAction ) {
switch ( gameAction ) {

case Canvas .UP: upPressed = true ; break ;
case Canvas .DOWN: downPressed = true ; break ;
case Canvas .LEFT: l e f tP r e s s e d = true ; break ;
case Canvas .RIGHT: r i gh tPre s s ed = true ; break ;
default : break ;

}
}

public void re leasedKey ( int gameAction ) {
switch ( gameAction ) {

case Canvas .UP: upPressed = fa l se ; break ;
case Canvas .DOWN: downPressed = fa l se ; break ;
case Canvas .LEFT: l e f tP r e s s e d = fa l se ; break ;
case Canvas .RIGHT: r i gh tPre s s ed = fa l se ; break ;
default : break ;

}
}

We now describe the updateRotation method as coded below.

private void updateRotation ( ) {
i f ( ang le<MAX ANGLE) ang le+=1.0 f ;

i f ( l e f tP r e s s e d ) { // ro t a t e l e f t around
// the z−ax i s

rotTrans . postRotate ( ang le , 0 , 0 , 1 . 0 f ) ;
zAngle += angle ;

}
else { // ro t a t e r i g h t around the z−ax i s

rotTrans . postRotate(−ang le , 0 , 0 , 1 . 0 f ) ;
zAngle −= angle ;
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}

// angle va lue s are modulo 360 degree s
i f ( zAngle >= 360.0 f )

zAngle −= 360.0 f ;
else i f ( zAngle <= −360.0 f )

zAngle += 360.0 f ;

// apply the z−ax i s r o t a t i on to transGroup
s t o r ePo s i t i o n ( ) ;
t rans . s e t I d e n t i t y ( ) ;
t rans . pos tTrans la te ( xCoord , yCoord , zCoord ) ;
t rans . postRotate ( zAngle , 0 , 0 f , 1 f ) ;
transGroup . setTransform ( t rans ) ;

}

Rotation takes place on the axis by changing the zAngle attribute, which
is increased or decreased by pressing the appropriate key. It is important to
store the rotation status in the Transform rotTrans object for keeping the
information useful for the car direction vector.

The getDirection method computes the direction of the car.

public f loat [ ] g e tD i r e c t i on ( ) {

// zVec conta in s the i n i t i a l d i r e c t i o n o f the car
f loat [ ] zVec = {− 1 , 0 , 0 , 0 } ;

// the exact d i r e c t i o n i s g iven a f t e r
// computing the app l i ed r o t a t i o n s

rotTrans . trans form ( zVec ) ;

return new float [ ] { zVec [ 0 ] , zVec [ 1 ] , zVec [ 2 ] } ;
}

The car direction is obtained by computing all the applied rotations. Car
direction is used for computing collision detection in the updateMove method.

Collisions are managed by using the RayIntersect class provided by the
M3G standard. A RayIntersect object is set by the pick method, which is
part of the Group objects. RayIntersection stores a pointer to the intersected
Mesh or Sprite3D, and to all the relevant information about the intersection
point.
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The pick method first takes Mesh or Sprite3D into the group and enables
it for picking, which is intersected by a pick ray passed as a parameter (a ray
is a line in our case).

The following is the code for the updateMove method. It is self-explanatory,
as it includes comments:

private void updateMove ( ) {

transGroup . getTransform ( t rans ) ;

// computing space from speed
space=speed ∗0 .5 f ;

// check c o l l i s i o n s
RayInte r s e c t i on r i = new RayInte r s ec t i on ( ) ;

// car d i r e c t i o n updating
d i r=ge tD i r e c t i on ( ) ;

// check whether the re i s something in f r on t
// (Mesh or Sprite3D ) exc lud ing the car i t s e l f
// and the f l o o r

i f ( scene . p ick (−1 , xCoord , yCoord , zCoord ,
d i r [ 0 ] , d i r [ 1 ] , d i r [ 2 ] , r i ) ) {

// ob j e c t d i s t anc e
f loat d i s t anc e = r i . ge tDi s tance ( ) ;

// 38 i s cone s i z e

i f ( d i s t ance >38.0 f + space ) {
// move
t rans . pos tTrans la te (− space , 0 , 0 ) ;
transGroup . setTransform ( t rans ) ;

}
else {

// stop the car
speed =0.0 f ;
return ;

}
}
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// move
t rans . pos tTrans la te (− space , 0 , 0 ) ;
transGroup . setTransform ( t rans ) ;

}

Figure 4.10 shows a snapshot of the application described with coding
examples, and includes many of the API described in the chapter.

Fig. 4.10. DemoCar screen shot.
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4.13 Summary

This chapter introduced M3G and the Java Mobile 3D Graphics library, and
described how an application could be developed for mobile devices supporting
this standard.

We described also the frameworks (CLDC/MIDP) used by Java for man-
aging mobile devices and applications. M3G is consider an extension of these
libraries and thus it is included in their development process. We also discussed
the modalities of M3G, Immediate and Retained mode, explaining when and
how to choose between the two. We then described elements of the M3G scene
graph, which is a hierarchical structure used by this library for representing
and managing a 3D scene.

We finally provided a comprehensive example, called CarDemo, including
all the concepts, elements, and API that clarify the functionalities.
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Direct3D r©Mobile

Direct3D r©Mobile (D3DM) is a MicrosoftTM-developed API that provides 3D
support for mobile devices based on Microsoft Windows r©OS. It is derived
directly from DirectX r©API already included in the desktop versions of MS
Windows; moreover, it is optimized to match mobile devices’ requirements.
The main source of information concerning D3DM is the Microsoft Developer
Network library (MSDN) [45]. This chapter discusses D3DM libraries and de-
scribes the architecture of these API; we consider that D3DM API, compared
to OpenGL ES and M3G, suffer from their portability; as it can be used only
with MS Windows OS.

5.1 Architecture

D3DM is implemented with component object model (COM) interfaces and
objects; COM is an object-oriented protocol used by Microsoft products that
is quite powerful and extensible. All of the most used and current program-
ming techniques in the MS Windows environment, like .NET r©and COM+ r©,
are based on COM libraries. From a technical viewpoint the COM architec-
ture is very extensible since it allows a combination of software components
even during run-time execution. That is like having off-the-shelf facilities for
programming.

COM technology provides primitives for developing reusable software mod-
ules; these modules expose functions that modules can invoke by using pro-
gramming interfaces. All objects included in COM architecture can be devel-
oped by using two different approaches:

• They can be stored in dynamic linking libraries (DLL).
• Or they can be linked directly in an executable file (EXE).

After describing very generally the COM technology, we focus on the
D3DM approach (based on COM). The first object a D3DM application can
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create and interact with is the Direct3DMobile object. When an application
written to use this technology is executed, it must obtain a pointer to the IDi-
rect3DMobile interface (an interface for the Direct3DMobile object) in order
to have access to all its functionalities.

The following code snippet shows how to invoke a Direct3DMobileCreate
function in order to get a pointer to a IDirect3DMobile interface:

LPDIRECT3DMOBILE g pD3Dm = NULL;

i f ( NULL == (g pD3Dm =
Direct3DMobileCreate (D3DM SDK VERSION) ) )

return e FAIL ;

The API functionalities are grouped together in a set of interfaces that pro-
vide access to standard COM methods; not all of these interfaces are allowed
to create objects or invoke other interfaces by themselves.

The three main aspects of Direct3D Mobile are as follows:

• Graphic models described by geometric primitives
• Geometric primitives parameters and drawing options encapsulated in a

finite state machine called the rendering pipeline
• Output provided by a frame-based graphic model

Basic primitives included in the D3DM library are points, lines, and trian-
gles. They are all described in term of vertices in a three-dimensional Carte-
sian space. Vertices data are all loaded in particular structures called vertex
buffers, described in Chapter 3. The D3DM library provides applications with
methods for creating vertex buffers and for loading and describing vertex data.

The Rendering pipeline in D3DM is designed as a finite-state machine used
for managing geometric primitives display. Inputs to a finite-state machine are
geometric primitive descriptions, while output is represented by different color
values of pixels contained in a frame buffer. The Direct3D Mobile library
provides a set of options and parameters, called states, for managing the
rendering phase. The possible statuses that can be used by a developer are
provided by a set of definitions and properties (called capabilities) included
in the D3DM software drivers.

There are two methods for a software driver to represent the properties it
supports:

• A low-level method uses a standard set of property bits. Applications
can query these bits to get information about the graphics level and the
features supported by that particular driver.

• Another method is based on system profiles built on top of property bits.
Each profile represents a specific set of bits packaged for different categories
of mobile devices. In this way applications developed for a certain profile
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work with drivers supporting that specific profile. This approach simplifies
the development of mobile graphics applications because it directly uses
profiles with no need for an application to query the property bits.

D3D mobile uses a display model based on frames. This means that an
application notifies the API that it is ready to display by invoking the IDi-
rect3DMobileDevice::BeginScene method. While that application defines a
scene, API fill a command buffer, which contains all the commands (with prim-
itives) for drawing that scene. When an application finishes drawing a scene, it
invokes the IDirect3DMobileDevice::EndScene method. After these steps the
scene is enqueued for the rendering phase but it is still not passed to a driver.
The application should explicitly invoke a IDirect3DMobileDevice::Present
method in order to display scenes on a mobile device.

5.2 Rendering Pipeline

The rendering pipeline defines how to manage and process input data, usually
vertices, by transforming them in pixel color values. This computational pro-
cess joins three-dimensional data models to a graphic display. It offers a set of
predefined options that describe how input data have to be processed. These
options can be applied in different ways, even if the number of available op-
tions is limited. Basically all rendering processes can be subdivided into four
phases:

• Transformation
• Lighting
• Rasterization
• Per-pixel operations

During the first phase, Transformation, vertices are numerically processed
to generate physical coordinates on the screen for points, lines, and triangles.
The D3DM library simulates lighting effects by using mainly vertices. When
Lighting is enabled, light parameters are used for computing diffuse colors
and specular values for each pixel in the scene. These values are passed to
a rasterizer, which is in charge of interpolating values for each pixel in the
scene. In the third phase, rasterization, the screen space coordinates for vari-
ous primitives are involved in determining the exact set of pixels composing a
specific primitive. The scope of this phase consists of finding vertices that are
part of a geometric primitive for generating pixels that will display the prim-
itives on screen. The components of a vertex, like color and texture data, are
used for representing the attributes of a geometric primitive. After computing
the output values for each pixel, some final operation should be performed in
order to get a rendered scene, Per-Pixel operations. These operations include
many tests for example, for determining the visibility of a pixel and its level
of transparency in a scene. Some of these operations result in discarding a
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specific pixel from a scene (for example, if it is occluded by other pixels),
and in that case the process will continue on the next pixel belonging to the
specific primitives.

5.3 Primitive Types

Many primitive types are supported by D3DM, and thus could be supported
by an application written for this platform. These types are passed as param-
eters to IDirect3DMobileDevice::DrawPrimitive and IDirect3DMobileDevice::
DrawIndexedPrimitive in order to be drawn.

The following table lists some supported types:

Primitive types D3DMPRIMITIVETYPE value

Point List D3DMPT POINTLIST
Line List D3DMPT LINELIST
Line Strip D3DMPT LINESTRIP

Triangle List D3DMPT TRIANGLELIST
Triangle Strip D3DMPT TRIANGLESTRIP
Triangle Fan D3DMPT TRIANGLEFAN

The vertices used by each primitive are read by an active vertex buffer.
The IDirect3DMobileDevice::DrawPrimitive method takes as a parameter
a pointer to the first vertex, from which it reads the rest of the data
in sequence, and a number of primitives (to be drawn). If there aren’t
enough available vertices in the vertex buffer for drawing a primitive, it
is ignored and the process continues with successive commands. The IDi-
rect3DMobileDevice::DrawIndexedPrimitive method uses the same primitive
types first method but the vertices are managed differently. Instead of loading
the vertices directly from a vertex buffer in sequence, the indices (pointing to
vertices) are loaded from an index buffer. Each index is a pointer to a corre-
sponding vertex stored in the vertex buffer. In this way each vertex stored in
a single position in the vertex buffer can be used many times without wasting
memory by replicating the same data. Vertices could include different kinds of
data, but have a position vector for locating the vertices in coordinate space. A
set of different data associated with a vertex (for instance, a color for light dif-
fusion and a color for specular diffusion) is defined by a flexible format (Flex-
ible Vertex Format, FVF ). Vertex structures, stored in a vertex buffer, are
created by invoking the IDirect3DMobileDevice::CreateVertexBuffer method.
One parameter of this method is an FVF value. This means that all vertices
included in a vertex buffer must have the same data format.

We will now show a typical section of D3DM code for creating a vertex
buffer. This will help readers to better understand the programming statement
logic included in the D3DM library, which is, as already mentioned, close to
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the Microsoft DirectX programming logic; thus a pseudo-code snippet will
look like this:

protected VertexBuf fer CreateVBuff ( Device dev )
{

dev . VertexFormat = setVertextFormat ( ve r t ex t . Format ) ;

v e r t i c e s [ ] = new v e r t i c e s [ 3 ] ;

v e r t i c e s [ 0 ] = new v e r t i c e s ( x0 , y0 , z0 , 1 ,

Color0 . ToArgb ( ) ) ;

v e r t i c e s [ 1 ] = new v e r t i c e s ( x1 , y1 , z1 , 1 ,

Color1 . ToArgb ( ) ) ;

v e r t i c e s [ 2 ] = new v e r t i c e s ( x2 , y2 , z2 , 1 ,

Color2 . ToArgb ( ) ) ;

VertexBuf fer bu f f e r = new VertexBuf fer (

typeo f ( v e r t i c e s ) , v e r t i c e s . Length , dev , 0 ,

v e r t i c e s . Format , Pool . De fau l t ) ;

GraphicsStream stream = bu f f e r . Lock ( 0 , 0 , 0 ) ;

stream . Write ( v e r t i c e s ) ;

bu f f e r . Unlock ( ) ;

return bu f f e r ;
}

Since vertices in D3DM are described by an FVF, the first lines set the
vertex format as a global setting. This means that a device is now expecting
every vertex to have transformed coordinates and to contain color information.

After the format statement we create a vertex array for storing vertices
information.
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We store information in this array by using five parameters: x, y, and z
position, a w value, and an integer representing a color. Let’s ignore z for now
and recall that we are working in transformed coordinates (screen coordinates)
and so z does not have to be managed for it. The w could also be ignored
for this first example; in fact, it is set to a constant value 1. Color is clearly
referred to a vertex, although D3DM makes use of the ToArgb() method to
convert it to an integer.

By defining three vertices we are basically creating a triangle, but we still
need to create a vertex buffer itself.

Note that a VertexBuffer can contain one type of vertex. We define what
type it is with a first argument, how many vertices it includes with a second
argument, and a device with the third. We specify options with a fourth
argument (set to 0 for now), defining the format of the vertices with fifth, and
ask for default pooling with the final argument. Pooling is an advanced topic,
and we don’t need to deal with it in this simple example.

Finally, we get a reference to a GraphicsStream by locking VertexBuffer,
and then call its method for writing three vertices into the VertexBuffer. Then
we need to unlock VertexBuffer. Lock and unlock are important because they
tell D3DM that we are updating VertexBuffer and it can’t, for instance, try
to access information while we are doing so.

With VertexBuffer created, we can now concentrate on rendering, as shown
in the next snippet of code.

protected void Render ( )
{

dev . Clear ( Color ) ;

dev . BeginScene ( ) ;

dev . SetStreamSource ( 0 , v e r t i c e s , 0 ) ;

dev . DrawPrimitives ( PrimitiveType . Tr i ang l eL i s t , 0 , 1 ) ;

dev . EndScene ( ) ;

dev i c e . Present ( ) ;
}

The first two lines simply clear a device context with a background color
and set a scene starting point.

SetStreamSource informs a device to render by taking vertex data from
that vertex buffer. In fact, there might exist several vertex buffers, for instance
one for each object that we want to display; thus it is important that we set
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a stream source before each rendering call, otherwise the system will display
the wrong shapes.

DrawPrimitives takes as the first argument things to draw. There are ba-
sically six choices: PointList, LineList, LineStrip, TriangleList, TriangleStrip,
and TriangleFan.

Since we are drawing a triangle, we have three choices: TriangleList, Tri-
angleStrip, and TriangleFan. TriangleList is the simplest because it specifies
to D3DM that we are going to handsets of three vertices in a vertex buffer,
and for each triplet it draws a corresponding triangle. We won’t mention again
the triangle fans and strips since they work the same as in OpenGL ES API.

A second parameter is an offset of a vertex buffer. In our case, the offset
is zero, since we want to start at the beginning. But if we have to manage
hundreds of vertices describing many triangles, we might want to draw only
a small portion of them. In that case we need an index for the first triangle
to display.

The third parameter controls the number of primitives that will be drawn.
For instance, specifying 2 in our code snippet would cause an error, since the
system would try to draw two triangles, which for a TriangleList would need
six points, while instead our vertex buffer only has three (Figure A.2).

5.4 Transformations

Transformations are performed, as in standard OpenGL, by using matrices
called transformation matrices. These matrices can be defined using floating
point 32-bit IEEE standard values, or using fixed point values of 16.16 type
(see Chapter 2, section 2.3.1).

The default value for transformation matrices is an identity matrix. There
are three types of transformations:

• World transformations
• View transformations
• Projection transformations

The first transformation (World) transforms coordinates from a model
space, where vertices are defined with respect to a local model coordinates
origin, to global space, where vertices are defined with respect to a common
coordinate origin of all objects included in a scene. Figure 5.2 shows the
relationships between the global coordinates and the local model coordinates.

The second transformation (View), localizes an observer viewpoint in
world space; thus it transforms the vertex coordinates in the camera space
coordinates. In this space, a camera is located in the origin of the space,
directed toward the positive z-axis.

The third transformation (Projection) is related to the camera’s inter-
nal controls and it is a bit more sophisticated. In this phase a view volume
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Fig. 5.1. In the rendered triangle the color of each vertex is blended smoothly across
triangle surface. We have set Color0.ToArgb() as red, Color1.ToArgb() as green, and
Color1.ToArgb() as blue.

is defined, a three-dimensional volume represented by (using perspective) a
pyramid truncated by the front and back planes (clipping planes).

In the previous section, we discussed how to render a scene using a vertex
buffer. During the rendering phase we used transformed coordinates.

Rendering a scene involves many steps. The most effective way of modeling
an object differs between each of these steps. For example, if we consider a
cube, when specifying vertices that compose that cube, it is easier to set one of
its corner as being located ”in origin”, and other corners being at coordinates
such as (0, 0, d), (0, d, 0), (d, d, 0), etc.
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Fig. 5.2. Relationships between local and global coordinates.

A coordinate system appropriate for a given object is called a local coor-
dinate system, local space, or object space.

If we have a complex scene, like hotel room with many objects inside it,
such as a: bed, desk, and lamps, we need a coordinate system that is different
from a local coordinate system. We will set up a coordinate system that has
its origin in a corner of that room, and whose axes are lined up with the walls
and floor. This coordinate system is called world coordinates or world space.
The idea is that it is a coordinate system that expresses the positions of things
in the world. All objects in a scene have their own set of local coordinates,
but they share world coordinates, as already seen in the first chapter.

To transform coordinates from one coordinate space into another, we need
to manage matrix operations. If we pick our matrix elements carefully, mul-
tiplying that matrix with a set of coordinates in one coordinate space turns
them into equivalent coordinates in another space. D3DM refers to this as a
transformation, and there are several important ones. In that sense, a matrix
is a transformation. For instance, a transformation that helps us locate our
object in world space (turns the objects’ local coordinates into world coordi-
nates) is a world transformation.

A matrix structure, included in D3DM library, has lots of methods that
free us from having to execute math computations for finding the appropriate
matrix coefficients.

For example, we can have a matrix that represents a k fraction of 180-
degree rotation around the x axis:

Matrix worldTxfm = Matrix . RotationX (Math . PI / k ) ;
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For instance if k = 2, the rotation will be of degrees, since the angle is
specified in radians.

There are mainly two kinds of transformation in D3DM: view transforma-
tions and projection transformations. Lets consider the view transformation
first.

While object space is a coordinate system that is useful for objects in a
scene, certain operations needed for rendering are more easily represented in
view space. There is also a camera space, because space is defined as having
its origin at a camera (or eye) point. That is, its origin is co-located with
a viewer. In addition, to set an origin at a camera point, the view space z
axis points to the same direction as the camera, and the y axis points up.
We can have a matrix that represents transformations necessary to change
world coordinates into view space coordinates using a matrix method called
LookAtLH.

Matrix viewTransform = Matrix . LookAtLH(
new Vector3 (x , y , z ) , . . .

) ;

LookAtLH takes three arguments: camera position, position to point at,
and a direction for ”up”. These coordinates are specified by a Vector3 struc-
ture in world coordinates.

View space is useful for graphical operations that have to interact with a
camera (such as z-buffering) but its not very useful for displaying pixels on
the screen. To turn three-dimensional objects’ view space into two-dimensional
display space, we can use a projection transformation. Matrix structure has
a method also for projection transform:

Matrix pro ject ionTrans form = Matrix . PerspectiveFovLH (
f i e l d o f v i e w , a s p e c t r a t i o , f r on t p l an e , back plane

) ;

PerspectiveFovLH takes four arguments: a field of view, an aspect ratio,
and distances that define clipping planes.

For field of view larger numbers will display more details of world space on
the screen, but will probably end in distortions. Smaller numbers mean less
distortion, but less world will be displayed.

The aspect ratio indicates the width
height ratio of a displayed window. Note

that regardless of the aspect ratio, D3DM will always change images to fit the
actual windows.

The last two arguments specify the clipping planes. We already described
this concept in a previous chapter, but recall that it can be defined as a plane
that specifies the front or back of a scene, that is a portion of a world model
displayed in a view.



126 5 Direct3D r©Mobile

5.5 Lighting

Lighting is enabled by using the D3DMMRS LIGHTING status variable. If
status value is TRUE, lighting is enabled and the vertex colors are gener-
ated according to the lights present in a scene. If status value is FALSE,
then lighting is disabled and no light computation takes place. The default
value for D3DMMRS LIGHTING status is TRUE. A property bit, called
D3DMDEVCAPS SPECULAR, indicates if a device supports specular illu-
mination management. If a device supports this feature, then, the lighting
operation can be managed by adding a D3DMRS SPECULARENABLE sta-
tus. Also in this case, if status value is TRUE, other computations are per-
formed on the vertices; otherwise if status value is FALSE, only diffuse color
computations are processed and specular color is set to zero for each vertex.

D3DM supports an unlimited number of lights per scene. The only limit
on the number of lights is imposed by the software drivers. Lights are
identified by index values. There are many methods for managing a light
in IDirect3DMobileDevice, such as: IDirect3DMobileDevice::SetLight, or IDi-
rect3DMobileDevice::LightEnable. Lights are described by a D3DMLIGHT
structure:

typedef struct D3DMLIGHT {

D3DMLIGHTTYPE Type ;

D3DMCOLORVALUE Di f f u s e ;

D3DMCOLORVALUE Specular ;

D3DMCOLORVALUE Ambient ;

D3DMVECTOR Pos i t i on ;

D3DMVECTOR Dir e c t i on ;

f loat Range ;

f loat Attenuation0 ;

f loat Attenuation1 ; 8 9

f loat Attenuation2 ;

} D3DMLIGHT;
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The output of the lighting phase is diffuse and eventually the specular color
of the vertices appears in the Alpha, Red, Green, and Blue (ARGB) format. If
lighting computation is not enabled; the vertex colors are computed as follows:

• If a diffuse color value is already present, it is passed to the system by
the rendering pipeline; otherwise a white color is used as the default
(0xFFFFFFFF ).

• If a specular color value is already present, it is passed to the system by
the rendering pipeline; otherwise a black color is used as the default (0).

If lighting is enabled, the vertex colors, before being passed to a rasterizer,
are normalized in the range [0.0, 1.0] and scaled between 0 and 255. If nor-
mals (with respect to a fixed vertex) are not specified, then all dot products
concerning that normals are set to zero.

As we already described for OpenGL ES API, there are four kinds of lights
in D3DM: point lights, directional lights, spot lights, and ambient lights.

Point lights emit light equally in every direction from a particular point
in space. This sort of light can be used, for instance, to model a typical light
bulb.

Directional lights are supposed to be located an infinitely far distance
away. Because of this assumption, all light rays are parallel to one another;
they are all oriented in the same direction. A directional light usually models
natural lighting, like sunlight, for example.

Spotlights are much like point lights, in that they emit light from a specific
point in space. But rather than irradiate in all directions, they are constrained
to point toward a certain direction. This kind of light shapes a cone in space.

Ambient light models lights that echo off of objects. This effect is a kind
of overall lighting that illuminates everything more or less uniformly.

There are generally two kinds of attributes, that lights have: diffuse and
specular, as shown in the following snippet of code.

protected void Lights ( )
{

dev . L ights [ 0 ] . D i f f u s e = Color ;

dev . L ights [ 0 ] . Type = LightType . D i r e c t i o n a l ;

dev . L ights [ 0 ] . D i r e c t i on = new Vector3 (x , y , z ) ;

dev . L ights [ 0 ] . Update ( ) ;

dev . L ights [ 0 ] . Enabled = true ;

}
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In this code we’re accessing the Lights array of a device. Lights are usually
a limited resource but they can differ depending on the systems. We can
manage them individually by the Lights array.

First we set a diffuse color. Usually the light color is white, although other
colors might be useful for different situations. Then we set the type of light.
Here we are considering a directional light, but we could also have used a
point light or other kinds of light by setting the appropriate parameters.

Directional lights require specifying a direction. So we set a vector for
specifying direction. If, for instance, we are setting up a point light, we don’t
need to do the same (specify a direction), since they emit in all directions, but
we need to position a light source. Spotlights, instead, would require defining
both a position and a direction.

After setting up a light, we need D3DM to acquire changes (in the light
attributes) by the Update method, and we turn lights on by enabling them.

After setting up the lighting, we only need to call Lights, for instance
during the graphics context initialization.

That’s another thing we must take care of; in fact, recall that lighting
interacts with a surface according to its surface normal. We have already
discussed surface normals, and mentioned briefly that information is stored
with vertices.

To manage normals, we need to use one of the vertex formats that stores
normal information, like Vertex.PositionNormalColored.

A constructor for a PositionNormalColored vertex takes the same argu-
ments as PositionColored ; which we have already managed, plus three more:
x, y, and z components of a vertex surface normal.

Since we have decided to use a certain vertex format, we’ll need to be sure
we inform the device, by invoking:

dev . VertexFormat = Vertex . Posit ionNormalColored . Format ;

If we don’t set the appropriate format, the device will be expecting vertices
in some other format, and this may cause errors.

5.6 Summary

This chapter explored the Microsoft Direct3D Mobile (D3DM) library, de-
scribing the architecture and rendering pipeline associated with it.

D3DM is implemented with COM (Component Object Model) interfaces
and objects; COM is an object-oriented protocol used by Microsoft products
that is quite powerful and extensible. Thus we introduced the basic usage of
COM interfaces that are useful for developing D3DM code.

Finally, we provided snippets of code for geometric primitives and per-
vertex operations, transformations, and lighting.
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Conclusions and Prospect

This book presented an introduction to mobile 3D Graphics applications
and libraries. We introduced basic graphics concepts such as: the rendering
pipeline, geometric transformations, and world coordinates. These concepts
have been presented by using mobile graphics libraries, thus providing a basic
introduction to readers unfamiliar with graphics concepts. In the first part we
discussed the limits and prospects of mobile graphics applications. We also
highlighted fields and applications that can provide benefits to those employ-
ing these technologies and tools. In the second part we introduced graphics
programming with the major libraries available on the market: OpenGL ES
API, M3G, and Microsoft Direct 3D Mobile. By showing code samples we
presented programming APIs and showed how mobile 3D graphics applica-
tions can be developed. After evaluating the presented libraries, the reader
can take advantage of this information by choosing the library that best suits
his application domain.

When new technologies become available, attention is paid [46]. We now
look at the future possibilities for two different points of view: research and
programming.

From the research point of view there is a new approach to distributed
adaptive computation for improving the rendering performance of mobile de-
vices. For instance in [47] the authors describe a Mobile Adaptive Distributed
Graphics Framework (MADGRAF), which is a graphics-aware middleware
architecture that enables mobile devices to run complex 3D graphics applica-
tions over wireless networks. The approach to performance problems is solved
by client-server architecture, with the server performing preprocessing of com-
plex graphics scenes and then progressively transmitting compressed graphics
rendered frames tailored to the clients capabilities. This approach is related
to a general approach called Transcoding, which is usually defined as the pro-
cess of converting a media file or object from one format to another. But in
this case it can be used to fit 3D graphics computations to the performance
constraints of mobile devices.
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Since performance issues are crucial for graphics rendering on mobile de-
vices, being able to benchmark mobile 3D Graphics in the design cycle of
that device is important. In fact, the benchmark results can be used to guide
performance optimization.

In [48] the authors describe a synthetic content approach for measuring
OpenGL ES 3D graphics performance of mobile devices. They developed a
synthetic content tool that can create different kinds of OpenGL ES graph-
ics content according to a large number of input parameters. The synthetic
content is checked by comparing the performance of the real and synthetic
contents in the same platform.

The creation of two-dimensional images of three-dimensional scenes in real
time using mobile devices (or wireless devices) is becoming more and more
common. Typical applications are human - computer interfaces, geographic
applications, games, and more. 3D graphics on these mobile devices is a com-
plex task due to factors like the display resolution and battery consumption.
This kind of optimization is another area of research where prospective results
are coming to light.

In [49] the authors present a texture compression scheme, called iPACK-
MAN. This new algorithm is an extension of the PACKMAN texture com-
pression system, and while it is a bit more complex than PACKMAN, it is
still very undemanding in terms of computational requirements but achieves
very good results in the quality of rendered images.

From the programming point of view, it is hard to write about future
developments since companies and groups can change their plans, but there
is some news on OpenGL ES that could be of interest as an example of
how libraries can split and specialize for different domains (desktop, mobile,
multimedia, ...).

Most recently the Khronos organization has announced that OpenGL ES is
dividing into OpenGL ES 1.x and OpenGL ES 2.x. OpenGL ES 1.x is intended
for platforms like embedded and some handsets, which have less computational
power. OpenGL ES 2.x is intended for platforms that can support program-
ming [50]. OpenGL ES 2.x will not be 100 percent backward-compatible with
OpenG ES 1.x. As Jon Peddie wrote in Tech Watch volume 5, number 6,
2005, ”In general it is hoped that applications developers can deal with this
through the use of OpenGL ES 2.0 shader programs, but if vendors have a
product that requires both OpenGL ES 1.x and OpenGL ES 2.x they can
always ship both with the product”.

This is an example of the reason we chose to describe many programming
approaches in this book; not only is this an introductory book, but also it is
a book that will help readers in choosing the right approach, depending on
their application/research area.
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Appendix A: OpenGL r©ES Code Samples

A.1 Starting with a Window

OpenGL ES provides basic functions for specifying graphics primitives, at-
tributes, geometric transformations, viewing transformations, and many other
operations. As we noted in earlier, OpenGL ES is designed to be hardware in-
dependent; therefore, many operations, such as input and output routines, are
not included in this library. However, input and output routines and many ad-
ditional functions are available in auxiliary libraries that have been developed
for OpenGL programs.

The first step in developing an OpenGL application, and, in general, a
graphics application, consists of setting up a display window.

We will present code for an example called main.cpp. First we will use
two libraries starting with libGLES CM.lib. This library is the main OpenGL
ES library. The second one is ug.lib, and it is specific for abstracting window
interface environments; this library abstracts from OS implementation of win-
dowing systems, thus behaving like the OpenGL utility toolkit (GLUT) for
standard OpenGL r©, and freeing developers from supporting a specific OS. In
fact, in addition to OpenGL ES basic library, there are a number of associ-
ated libraries for handling special operations. The ug.lib provides a library of
functions for interacting with any screen-windowing system.

It’s possible to link these libraries using our specific integrated develop-
ment environment (IDE) or developing environment, but we will use a stan-
dard technique based on the Cpragma statement.

To link a library we use the following syntax:
�pragma comment(lib, "LIBRARY NAME")

#pragma comment( l i b , ”libGLES\ CM. l i b ” )
#pragma comment( l i b , ”ug . l i b ” )



132 A Appendix A: OpenGL r©ES Code Samples

In our graphics programs, we need to include a header file for the OpenGL
ES core library. For most applications we also need ug.lib for the windowing
system. Since we are using the ug.lib for abstracting interfaces from the cor-
responding OS, we only need to include a GLES/gl.h file as it includes also
GLES/egl.h and all the needed OpenGL ES functions.

#include ”ug . h”

In future examples all initialization code is included in an init function,
which in this first example is empty.

void i n i t ( )
{
}

To create a graphics content using OpenGL ES API, we first need to set
up a display window on our video screen. This is simply a rectangular area of
the screen in which our pictures will be displayed. We cannot create a display
window directly with basic OpenGL functions, since this library contains only
device-independent graphics functions, and window-management operations
depend on the supported OS.

Fig. A.1. A 250 by 250 display window at position (100,100) relative to the top-left
corner of a video display.

The OpenGL paradigm displays graphics on the screen by using frames.
For each single frame it is necessary to develop what will be presented on
the screen. A display function is executed for each frame; thus all graphics
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code will be inserted in this function. It requires an input parameter of the
UGWindow type, which represents the displayed window.

void d i sp l ay (UGWindow window ) {

}

Now let’s focus on the main routine. The first variable to be considered is
UGCTx. UGCTx is a handle that manages a default graphic engine (UG). The
ugInit function initializes a graphics engine and returns a handle assigned to
the UGCTx variable.

int main ( ) {

UGCTx HandleEngUg = ug In i t ( ) ;

The next step consists of creating a window using the ugCreateWindow
function. As already shown by the display function, a window variable UG-
Window is used to store a handle to an OpenGL ES window. The function
parameters are:

UGCTx ug: an handle.
const char *config: for managing options. This action enables some buffers

that will be described later; for now we can leave it as an empty string.
const char * title: this specifies the text being displayed as the window title

on top of a window.
int width & int height: the width and height of a window.
int x& int y: the left top screen corner coordinates where a displayed window

will be positioned.

UGWindow window = ugCreateWindow (HandleEngUg , ”” ,

”Create Window” , 2 5 0 , 2 5 0 , 1 0 0 , 1 0 0 ) ;

Now we call the already declared init function.

i n i t ( ) ;

Then we send to the OpenGL window objects to be displayed. We can
do this by using a display function, ugDisplayFunc, which takes as input a
window and one display handle.
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ugdisplayFunc (window , d i sp l ay ) ;

To prevent a program from immediately stopping, we need a sort of a loop.
This is what we actually call the Main Loop. This loop continue to iterate,
managing program messages and/or events. We can call the ugMainLoop
function only with a parameter, the window handle.

ugMainLoop ( ug ) ;

return 0 ;

}

We showed the basic steps for creating a simple window with OpenGL
ES API. Running this program, it seems that nothing has happened, and
in fact we haven’t yet specified what geometric primitives to display on the
screen. You’ll notice that pushing the OK button, in the top right corner,
the program will continue to run. The next paragraph shows how to manage
interfaces using the keyboard and mouse, and thus also how to quit a main
program.

A.2 Basic Interaction

Many programs require inputting data from the keyboard or mouse; thus we
need a way to associate an action with the key pressed.

The first step in managing keyboard inputs is to define a function that
has some parameters in input. We will define a basic function accepting four
parameters:

1. Current window linked by a UGwindow variable.
2. Key pressed, stored in an integer variable.
3. X coordinate of the mouse pointer when a key has been pressed.
4. Y coordinate of the mouse pointer when a key has been pressed.

void keyboard (UGwindow uwin , int key , int x , int y ) {

Then we check which key has been pressed.

switch ( key ) {
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We can check a key variable with each kind of character. In our example
the ’q’ character means quit and exit from the program.

case ’ q ’ : e x i t ( 0 ) ; break ; }
}

Standard characters can be test enclosed in quotation marks, while other
characters are identified by special key codes as shown in Table A.1.

Identifier Description

UG KEY F1 - UG KEY F2 function key from F1 to F12
UG KEY LEFT left arrow

UG KEY RIGHT right arrow
UG KEY UP up arrow

UG KEY DOWN down arrow
UG KEY PAGE UP page up

UG KEY PAGE DOWN page down
UG KEY HOME home key
UG KEY END end key

UG KEY INSERT Ins key

Table A.1. Special key codes.

We then link the keyboard input function to the main window in order to
manage the key pressing events in that specific window. We call the ugKey-
boardFunc function at the same point of the program where we call ugDispa-
lyFunc. ugKeyboardFunc takes a window manager and keyboard function as
parameters and links them.

ugKeyboardFunc ( uwin , keyboard ) ;

This is a simple example but shows how to manage keyboard interactions,
and by executing this code fragments in the main code, explained above, you
can exit from the displayed window pressing the ”q” key.

A.3 Geometric primitives and Per-Vertex Operations

In this example we see how to display a shape on the screen. Geometric
primitives, like squares or triangles, are implemented by specifying vertices of
geometric shapes. Vertices are points in a three-dimensional space, and thus
are composed of three coordinates: x, y, and z. After specifying the vertices, it
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is necessary to specify the types of geometric primitive, listed in the Chapter
3, section 3.3.3, table 3.1.

To display a triangle, one must specify coordinates of vertices for that
triangle, as follows in the code below.

GLfloat Tr iang l e [ ] = {
0 .25 f , 0 . 6 5 f , 0 . 0 f ,
0 .35 f , 0 . 3 5 f , 0 . 0 f ,
0 .85 f , 0 . 8 5 f , 0 . 0 f ,
} ;

We then define an init function for initializing the code. A graphic window
is initialized by declaring its background color in red, green, blu, and alpha
transparency (RGBA) by glClearColor function.

void i n i t ( ) {

g lC l ea rCo lo r ( 1 . 0 f , 0 . 4 f , 0 . 4 f , 0 . 0 f ) ;

Recall from Chapter 3, section 3.3.3 that in OpenGL ES transformations
are are managed by the GL MODELVIEW matrix, while views are managed
by GL PROJECTION. We use the projection matrix in this example.

There are many different specialized arrays in OpenGL ES that are, by
default, disabled. We enable only arrays we need; in this case, we enable only
color and vertex arrays by using the glEnableClientState.

g lC l ea rCo lo r ( 1 . 0 f , 0 . 4 f , 0 . 4 f , 0 . 0 f ) ;
g lEnab l eC l i en tS ta t e (GL COLOR ARRAY) ;
g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;
g lCo lo rPo in t e r ( 4 , GL FLOAT , 0 , Colors ) ;
glShadeModel (GL FLAT) ;
glMatrixMode (GL PROJECTION) ;

We initialize (clear) the projection matrix by using an identity matrix 1.

g lLoadIdent i ty ( ) ;

1 The identity matrix of size n is the n-by-n square matrix with ones on the main
diagonal and zeros elsewhere. In particular, the identity matrix serves as the unit
of all n-by-n matrices.
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To compute orthogonal projections we use the glOrthof function. It re-
quires six parameters for specifying clipping planes (left, right, bottom, top,
near, and far), as shown in Chapter 3, Figure 3.3. These parameters span the
area (of the scene) to be visualized in our display window.

g lOrtho f ( 0 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f , −1 .0 f , 1 . 0 f ) ;

To display the triangle we define a view port (i.e., a window on the screen)
by setting top-left and bottom-right corner coordinates. Finally, by the glVer-
texPointer we load in the vertex array, the triangle shape stored in the Tri-
angle matrix.

g lViewport ( 0 , 0 , 2 5 0 , 2 5 0 ) ;

g lVer texPo inte r ( 3 , GL FLOAT , 0 , square ) ;

}

For now we have set the view (orthographic) and the shape (a triangle).
To display a shape, we clear the screen by the glClear function.

void d i sp l ay (UGWindow uwin )

{

g lC l ea r (GL COLOR BUFFER BIT) ;

To draw a geometric primitive, OpenGL ES use the current vertex array;
it is used, as a parameter, by the glDrawArrays function; this function re-
quires, also, to specify how many vertices are need to draw the shape and what
type of geometric primitive to use (GL TRIANGLE STRIP in our example).

glDrawArrays (GL TRIANGLE STRIP , 0 , 3 ) ;

We finish by sending data from memory buffers (color and vertex arrays)
to the screen.

g lF lush ( ) ;

ugSwapBuffers ( uwin ) ;

}
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Fig. A.2. An orthogonal view of a square made by two triangles stripped together.

The displayed image will look like Figure A.2.
We now describe another example related to per-vertex operations; it con-

sists of managing primitive transformations (rotation, translation, and scal-
ing).

To show rotation (as an example of transformation) we will use a sim-
ple animation, and that is also interesting as it describes the OpenGL ES
capabilities at rendering time.

First we introduce two variables that hold the status of current rotation
with respect to the x and y axis.

f loat xrot = 0 .0 f ;

f loat yrot = 0 .0 f ;

We then introduce an array containing triangle vertices, as already seen
in a previous example. We are defining primitives as centered in axis origin,
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and in fact our transformation manages our model, a cube in this case, with
respect to the axis origin, as described below.

f loat va l = 0 ,3 f ;

GLfloat Cube [ ] = {
// Front
−va l , − va l , va l ,

va l , − va l , va l ,
−va l , va l , va l ,

va l , va l , va l ,
// Rear
−va l , − va l , − va l ,
−va l , va l , − va l ,

va l , − va l , − va l ,
va l , va l , − va l ,

// Le f t s i d e
−va l , − va l , va l ,
−va l , va l , va l ,
−va l , − va l , − va l ,
−va l , va l , − va l ,
// Right s i d e
va l , − va l , − va l ,
va l , va l , − va l ,
va l , − va l , va l ,
va l , va l , va l ,

// Up
−va l , va l , va l ,

va l , va l , va l ,
−va l , va l , − va l ,

va l , va l , − va l ,
// Down
−va l , − va l , va l ,
−va l , − va l , − va l ,

va l , − va l , va l ,
va l , − va l , − va l ,

} ;

We then define a color array. Colors are specified by a group of four coor-
dinates in RGBA space.
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GLfloat Colors [ ] = {
1 .0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f ,
0 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f ,
0 . 0 f , 0 . 0 f , 1 . 0 f , 1 . 0 f

} ;

The initialization function simply sets a background color.

void i n i t ( )

{

g lC l ea rCo lo r ( 0 . 87 f , 0 . 8 7 f , 0 . 8 7 f , 0 . 0 f ) ;

}

The display function is define as usual.

void d i sp l ay (UGWindow uwin )

{

g lC l ea r (GL COLOR BUFFER BIT) ;

We now draw the cube on the screen. It will include a smooth color.
There are two kinds of shading implemented by the glShadeModel func-
tion: GL FLAT and GL SMOOTH. GL SMOOTH is default shade model.
GL FLAT makes a shape single color. GL SMOOTH enables smooth shad-
ing, that is, vertices and primitive colors are computed by interpolating single
values of vertex colors.

glShadeModel (GL SMOOTH) ;

g lVer texPo inte r ( 3 , GL FLOAT , 0 , cube ) ;

g lCo lo rPo in t e r ( 4 , GL FLOAT , 0 , c o l o r s ) ;

g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;

g lEnab l eC l i en tS ta t e (GL COLOR ARRAY) ;
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Transformations are executed by the functions glTranslatef, glScalef,
and glRotatef. The f in each function name indicates that these functions ac-
cept only floating point parameters as input. Usually an x indicates a GLfixed
type for input parameters, while v is used for arrays.

After drawing the cube, we don’t want other shapes to be influenced by
the next transformations, since that will change the geometric coordinate ref-
erence. the glPushMatrix and glPopMatrix functions are used for storing
the actual state of the reference system in a stack. We insert our transforma-
tion code between these two functions, thus being sure that the model-view
matrix will be reset to its original state (reference system) after execution of
that code segment.

glPushMatrix ( ) ;

We now apply all three transformations. Each transformation will change
the model-view matrix, thus influencing the successive transformations. Re-
calling that geometric transformations are carried out by matrix multiplica-
tion, a product in matrix algebra changes with the order of factors, in our
example, translating a shape (geometric primitives) to right side of screen
and rotating. While rotating and then translating, we will see the shape move
diagonally with respect to the origin. To test this, try to change the order of
the following transformations.

glTranslatef takes three parameters as input, thus indicating how to move
along all three axis. Our first transformation consists of moving a cube 0.25
units right and 0.5 to the top.

g lT r an s l a t e f ( 0 . 5 f , 0 . 5 f , 0 . 0 f ) ;

Now we scale our object, recalling that is centered in the origin. The
scaling functions takes three values for each vertex and multiplies them for its
input parameters. If a shape was placed in the bottom left of a window, this
operation will have scaled the objects but the origin would still be centered
in the bottom left angle.

Thus we reduce our cubic shape by three fourths. It is possible to have a
different scaling coefficient for each axis.

g l S c a l e f ( 0 . 75 f , 0 . 7 5 f , 0 . 7 5 f ) ;

Finally, rotation takes place. The first parameter specifies the rotation
angle. The other three are used for indicating with respect to which axis an
object is rotated. A value of 1.0 usually indicates an axis.
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g lRota t e f ( xrot , 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;

We will now draw the cube. It will appear in three-fourth on the left half
of the screen.

// Back and Rear
g lCo l o r 4 f ( 1 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
g lNormal3f ( 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 0 , 4 ) ;
g lNormal3f ( 0 . 0 f , 0 . 0 f , −1 .0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 4 , 4 ) ;

// Le f t and Right s i d e s
g lCo l o r 4 f ( 0 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f ) ;
g lNormal3f (−1.0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 8 , 4 ) ;
g lNormal3f ( 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 1 2 , 4 ) ;

// Up and Down
g lCo l o r 4 f ( 0 . 0 f , 0 . 0 f , 1 . 0 f , 1 . 0 f ) ;
g lNormal3f ( 0 . 0 f , 1 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 1 6 , 4 ) ;
g lNormal3f ( 0 . 0 f , −1 .0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 2 0 , 4 ) ;

We now restore the original reference system by taking out from the stack
the original matrices.

glPopMatrix ( ) ;

We disable the color array, because it won’t be used for the rest of this
example.

g lD i s ab l eC l i e n tS t a t e (GL COLOR ARRAY) ;

And we close as usual.

g lF lush ( ) ;

ugSwapBuffers ( uwin ) ;

}
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To include an animation mechanism, we need a function called idle. This
function is called in the main loop when there are no other commands to
execute. It takes as parameter a window handler. This function increments
the rotation angle on shapes with respect to the x and y axes. Moreover, we
set the screen to be refreshed after changing the values, and this is obtained
by the ugPostRedisplay function.

void i d l e (UGWindow uwin ) { xrot += 1.0 f ; yrot += 1.0 f ;
ugPostRedisplay ( uwin ) ; }

The last thing to do is to specify to the UG engine which kind of idle
function to use via ugIdleFunction. This function takes two parameters: a
UG engine handle and an idle function. It is placed where ugMainLoop is
called.

ugIdleFunc ( ug , i d l e ) ;

The displayed image will look like Figure A.3.

A.4 Lighting

We start by defining two color arrays, one for ambient light and another for
diffuse light. The last one represents a color for the lighting source.

f loat l ightAmbient [ ] = { 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 . 0 f } ;

f loat l i g h tD i f f u s e [ ] = { 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 . 0 f } ;

Now an array for specifying materialproperties is needed, one for ambient
and another for diffuse light. Basically we multiply the lighting values by the
material values in order to obtain a final reflected color. Each value represent
a quantity used for reflecting a particular color.

f loat matAmbient [ ] = { 1 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f } ;

f loat matDif fuse [ ] = { 1 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f } ;

void i n i t ( ) {

First let’s activate lighting by using the GL LIGHTING parameter as in-
put for the glEnable function.
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Fig. A.3. The rotated cube as an example of geometric primitives transformations.

glEnable (GL LIGHTING) ;

g lEnable (GL COLOR MATERIAL) ;

OpenGL ES allows the use of eight different lights at the same time. To
enable one of these lights, a GL LIGHTx parameter has to be passed to the
glEnable function as input, with x = 0 . . . 7.

g lEnable (GL LIGHT0 ) ;

To define material properties, we use the glMaterialfv and glMaterialf
functions. glMaterialfv is used for multiple valued parameters, while glMa-
terialf is used when there is a single valued parameter, as shown later in this
example.

The first parameter defines which polygon face needs to be updated by
lighting information (for example GL FRONT). The second parameter is used



A.4 Lighting 145

to specify the type of lighting attributes and thus could be GL AMBIENT,
GL DIFFUSE, GL SPECULAR, GL EMISSION, or GL AMBIENT AND
DIFFUSE.

The last parameter is an array or single value depending on the function
used (glMaterialfv or glMaterialf).

The next two lines set the material properties.

g lMa t e r i a l f v (GL FRONT AND BACK, GL AMBIENT, matAmbient ) ;

g lMa t e r i a l f v (GL FRONT AND BACK, GL DIFFUSE , matDif fuse ) ;

Also lighting properties have to be set, and this can be done by using
the glLightfv and glLightf functions, which work in the same manner as
material functions.

g lL i gh t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient ) ;

g lL i gh t f v (GL LIGHT0 , GL DIFFUSE , l i g h tD i f f u s e ) ;

The remaining code for init functions is shown below.

g lEnable (GL DEPTH TEST) ;

glDepthFunc (GL LEQUAL) ;

g lClearDepthf ( 1 . 0 f ) ;

g lC l ea rCo lo r ( 0 . 87 f , 0 . 8 7 f , 0 . 8 7 f , 0 . 0 f ) ;

g lVer texPo inte r ( 3 , GL FLOAT , 0 , box ) ;

g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;

g lEnable (GL CULL FACE) ;

glShadeModel (GL SMOOTH) ;

}

The display function is the same as in the other examples.
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void d i sp l ay (UGWindow uwin ) {

g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

g lLoadIdent i ty ( ) ;

ugluLookAtf (
0 . 0 f , 0 . 0 f , 3 . 0 f ,
0 . 0 f , 0 . 0 f , 0 . 0 f ,
0 . 0 f , 1 . 0 f , 0 . 0 f ) ;

g lRota t e f ( xrot , 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;

g lRota t e f ( yrot , 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;

We already defined the normals, and they must be perpendicular to the
surfaces. Thus a surface in front of a light must have a (0,0,1) normal vector,
while a back surface has (0,0,-1). The vector length is one; thus both are
normalized vectors.

Normals are defined by the glNormal3F function before drawing the re-
lated primitives, and this function takes as input three parameters that iden-
tify the normalized vectors.

//FRONT AND BACK

g lCo l o r 4 f ( 1 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
g lNormal3f ( 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 0 , 4 ) ;
g lNormal3f ( 0 . 0 f , 0 . 0 f , −1 .0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 4 , 4 ) ;

The same thing is done for the bottom and side surfaces. Like color and
vertex arrays, there is also a normal array. It can be initialized by the glNor-
malPointer function, which works just like glVertexPointer.

To enable this array, the GL NORMAL ARRAY flag must be passed to
glEnableClientState as input.

//LEFT AND RIGHT
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g lCo l o r 4 f ( 0 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f ) ;
g lNormal3f (−1.0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 8 , 4 ) ;
g lNormal3f ( 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 1 2 , 4 ) ;

//TOP AND BOTTOM

g lCo l o r 4 f ( 0 . 0 f , 0 . 0 f , 1 . 0 f , 1 . 0 f ) ;
g lNormal3f ( 0 . 0 f , 1 . 0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 1 6 , 4 ) ;
g lNormal3f ( 0 . 0 f , −1 .0 f , 0 . 0 f ) ;
glDrawArrays (GL TRIANGLE STRIP , 2 0 , 4 ) ;
g lF lush ( ) ;
ugSwapBuffers ( uwin ) ;

}

Figure A.4 shows an example of lighting.
In the first example we enriched our scene by including lighting. The in-

cluded light didn’t have a particular direction, though. We will see now how
to use directional lights; this will allow us to manage diffuse and specular
illumination.

To better detect a visual effect of specular lighting, we set in the center of
our scene a red ball with an intense light pointing at it.

First let’s create arrays for setting the light properties and add a specular
array for a specular effect.

f loat l ightAmbient [ ] = { 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 . 0 f } ;

f loat l i g h tD i f f u s e [ ] = { 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 . 0 f } ;

f loat l i g h t Sp e cu l a r [ ] = { 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 . 0 f } ;

We now create a specular array also for a material. Let’s set it so that a
material will reflect all lights that hit it.

f loat matAmbient [ ] = { 1 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;

f loat matDif fuse [ ] = { 1 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;

f loat matSpecular [ ] = { 1 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;
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Fig. A.4. The scene with the color tracking enabled.

Since we’re dealing with a directional light, we must set the light position
and direction. We create two arrays for specifying these two properties. We
choose a sphere as the geometric model.

f loat l i g h tP o s i t i o n [ ] = { 2 0 0 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f } ;

f loat l i g h tD i r e c t i o n [ ] = { −200 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f } ;

We now enable lighting and the first light.

void i n i t ( )

{
glEnable (GL LIGHTING) ;

g lEnable (GL LIGHT0 ) ;
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We set the material properties and a specular value.

g lMa t e r i a l f v (GL FRONT, GL AMBIENT, matAmbient ) ;

g lMa t e r i a l f v (GL FRONT, GL DIFFUSE , matDif fuse ) ;

g lMa t e r i a l f v (GL FRONT, GL SPECULAR, matSpecular ) ;

We then set a new material property by using the glMaterialf function.
The shininess value for material is usually in the [0, 128] range. This value
specifies how much specular light will be polarized. The greater the value, the
more the light will be polarized.

g lMa t e r i a l f (GL FRONT, GL SHININESS , 2 0 . 0 f ) ;

The next step consists of setting the light properties.

g lL i gh t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient ) ;

g lL i gh t f v (GL LIGHT0 , GL DIFFUSE , l i g h tD i f f u s e ) ;

g lL i gh t f v (GL LIGHT0 , GL SPECULAR, l i g h t Sp e cu l a r ) ;

To set a position and the direction of the light, the GL POSITION and
GL SPOT DIRECTION flags must be set and passed as input to a glLightfv
function.

g lL i gh t f v (GL LIGHT0 , GL POSITION , l i g h tPo s i t i o n ) ;

g lL i gh t f v (GL LIGHT0 , GL SPOT DIRECTION , l i g h tD i r e c t i o n ) ;

Another useful flag is GL SPOT CUTOFF. It specifies a light cone size.
We can imagine an effect that is like an electric torch cone pointing to a wall.
For instance, a value of 1.2 creates a cone with an angle of 2.4 degrees. A
value of 180 will spread light in every direction.

g l L i g h t f (GL LIGHT0 , GL SPOT CUTOFF, 1 0 f ) ;

Finally, there three more flags that can be used:

• GL CONSTANT ATTENUATION,
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• GL LINEAR ATTENUATION,
• GL QUADRATIC ATTENUATION.

They can be used to manage light reduction.
Light reduction is a measure of how much light intensity is reduced by

moving far from a light source. In the torch example, its effect is light reduction
when moving far from the torch itself. We must consider that setting these
properties could end in decreasing the software performance since they require
many calculations and thus we won’t use them in our example.

g lEnable (GL DEPTH TEST) ;

glDepthFunc (GL LEQUAL) ;

g lClearDepthf ( 1 . 0 f ) ;

g lC l ea rCo lo r ( 0 . 87 f , 0 . 8 7 f , 0 . 8 7 f , 1 . 0 f ) ;

g lEnable (GL CULL FACE) ;

glShadeModel (GL SMOOTH) ;

}

We now create our ball (sphere) by using the ugSolidSpheref function.
At this point one may ask, where are the normal arrays set? The answer is that
the UG library automatically computes the normal directions and values.

void d i sp l ay (UGWindow uwin )

{

g lC l ea r (GL COLOR BUFFER BIT |GL DEPTH BUFFER BIT) ;

g lLoadIdent i ty ( ) ;

ugluLookAtf (
0 . 0 f , 0 . 0 f , 4 . 0 f ,
0 . 0 f , 0 . 0 f , 0 . 0 f ,
0 . 0 f , 1 . 0 f , 0 . 0 f ) ;

g lRota t e f ( xrot , 1 . 0 f , 0 . 0 f , 0 . 0 f ) ;
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g lRota t e f ( yrot , 0 . 0 f , 1 . 0 f , 0 . 0 f ) ;

ugSo l idSphere f ( 1 . 0 f , 2 0 , 2 0 ) ;

g lF lush ( ) ;

ugSwapBuffers ( uwin ) ;

}

The final scene rendering displays a red sphere with a specular reflection
on the top right side of the sphere (Figure A.5).

Fig. A.5. A red sphere with a specular reflection on top right side of the sphere.
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